Páginas

quarta-feira, 3 de novembro de 2010

Conteúdo - Jazigos Minerais 3

Vamos passar a fazer uma análise, um pouco mais pormenorizada, à classificação dos jazigos endógenos. Observando a tabela abaixo representada, podemos concluir que uma primeira subdivisão dos jazigos minerais endogénicos implica os jazigos ígneosmagmáticos ou primários, enquanto que a segunda subdivisão abrange os metamórficos ou secundários. Por sua vez os jazigos magmáticos podem-se subdividir em ortomagmáticos, pegmatíticos-pneumatolíticos, pirometassomáticos e hidrotermais. Os hidrotermais subdividem-se, de acordo com as temperaturas de formação, em hipotermais, mesotermais e epitermais.


Classificação dos jazigos minerais endogénicos ou endógenos







Temperaturas aproximadas de formação

Ígneos, magmáticos ou primários


                Ortomagmáticos
700 – 1500o C
                Pegmatíticos - pneumatolíticos
± 575o C
                Pirometassomáticos
500 – 800o C
                Hidrotermais:

§         hipotermais
300 – 500o C
§         mesotermais
200 – 300o C
§         epitermais 
50 – 200o C


Metamórficos

± 400o C

Na página anterior fizemos referência à diferenciação magmática. Os jazigos ortomagmáticos formam-se durante o primeiro estado de cristalização magmática, no qual cerca de 80 % do magma pode cristalizar, dependendo da rapidez de arrefecimento do referido magma. São exemplos de jazigos deste tipo, os jazigos de cromite (cromato de ferro) pertencentes ao complexo ígneo de Bushveld na África do Sul e os jazigos de magnetite (óxido de ferro) de Kiruna na Suécia.
Os jazigos pegmatíticos-pneumatolíticos formam-se a partir dos fluidos sobreaquecidos e substâncias voláteis que escapam do magma e penetram nas fendas e fissuras das rochas ígneas mãe ou nas rochas encaixantes. São exemplos deste tipo, os jazigos de espodumena (silicato de alumínio e lítio) de Black Hills (Dakota do Sul, EUA), Madagáscar, Bikita (Zimbabwe) e os jazigos de berilo (silicato de alumínio e berílio) da Alemanha, Estados Unidos e Brasil. O berilo apresenta grande numero de variedades, segundo a cor e a composição química. Algumas das variedades, mais conhecidas, são: 1) esmeralda, explorada como gema (pedra preciosa de cor verde) na Colômbia, Zimbabwe, África do Sul, Tanzânia, Brasil..., e 2) água-marinha, explorada como gema (pedra preciosa de cor verde azulada) no Brasil, Irlanda do Norte, Itália (Ilha de Elba), Birmânia...
Os jazigos minerais pirometassomáticos formam-se, normalmente, nos contactos entre calcários (rochas sedimentares) e os granodioritos intrusivos (rochas ígneas plutónicas de grão grosseiro, constituídas por quartzo, plagioclases e feldspato potássico; como minerais acessórios apresentam biotite, horneblenda e mais raramente piroxena. É uma rocha cuja composição mineralógica situa-se entre o granito e o diorito.). Os fluidos à temperatura entre os 500 e 800 graus centígrados, portadores de elementos químicos importantes para a formação de minérios, passam das rochas ígneas (granodioritos) para as rochas encaixantes (calcários), dando lugar ao fenómeno de metassomatismo (processo de substituição de um mineral por outro). A recristalização e reconstituição mineralógica, originam uma associação característica (paragénese) de minerais nos jazigos deste tipo. Os minérios são a magnetite, hematite, pirite, calcopirite, blenda, galena, cassiterite, ouro, molibdenite e volframite (de notar que estes minérios, por vezes, têm géneses distintas, caso já acima exemplificado com a magnetite). Um exemplo clássico deste tipo de jazigos são as minas de Morenci no Arizona, Estados Unidos.
Os jazigos hidrotermais pertencem à classe final dos jazigos de génese magmática. Os fluidos hidrotermais transportam elementos químicos, importantes para a formação de minerais com interesse económico, a partir do magma de origem. Estes fluidos activos abandonam o magma a elevada temperatura e, deste modo, as reacções químicas com as rochas encaixantes que atravessam na sua trajectória e o abaixamento da temperatura originam novos minerais, por vezes em concentrações com interesse económico. Esta deposição de novos minerais pode ter lugar em cavidades e fendas (fissuras, diáclases, fracturas e falhas) sob a forma de filões e veios, ou entre os grãos das rochas sedimentares ou outros espaços similares sob a forma de impregnações. Os jazigos hidrotermais subdividem-se com base nas temperaturas de formação, em jazigos de altas temperaturas, médias e baixas, constituindo, respectivamente, os jazigos hipotermais, mesotermais e epitermais. Um exemplo de jazigo hipotermal é o filão aurífero de Kolar na Índia, explorado até à profundidade de 2800 metros, situado numa zona de falha.
Os jazigos metamórficos resultam da formação e concentração de novos minerais por efeito do metamorfismo, seja regional ou de contacto. Alguns silicatos de alumínio, tais como silimanite, cianite e andaluzite, são explorados a partir de jazigos metamórficos. A silimanite é explorada, por exemplo, na Alemanha, Áustria, Índia e Estados Unidos; a cianite é explorada, por exemplo, na Rússia, Estados Unidos e Itália; a andaluzite é explorada, por exemplo, na Espanha, Rússia, Estados Unidos e Austrália.

segunda-feira, 1 de novembro de 2010

Conteúdo - Tectónica de Placas 8

principais placas

Mapa mostrando as principais placas da Terra e as respectivas designações, bem como o traçado das cristas e fossas mais importantes. As direcções dos grandes movimentos relativos das respectivas placas estão indicadas com setas azuis.


Hoje é possível medir, com precisão, a velocidade de expansão e de subducção das placas. Mas, como é que os cientistas podem saber quais foram as velocidades do movimento das placas ao longo do tempo geológico? Os oceanos guardam uma das chaves do enigma. Porque o listado magnético dos fundos oceânicos grava as inversões do campo magnético terrestre tal como já foi referido anteriormente, e os cientistas sabendo a duração aproximada de uma inversão, podem calcular a velocidade média do movimento da placa durante uma dada extensão de tempo. Estas velocidades médias de afastamentos (cristas ou dorsais) e desaparecimentos (fossas-zonas de subducção) das placas podem variar muito, como é visível nos exemplos actuais apresentados no mapa representado em baixo.


mapa das placas e velocidades
Mapa mais pormenorizado que o representado acima. As setas negras indicam o movimento relativo das placas, limites divergentes setas de sentido contrário e limites convergentes setas com o mesmo sentido, encontrando-se junto a elas os valores das velocidades médias relativas das respectivas placas.

sexta-feira, 29 de outubro de 2010

Conteúdo - Formação de Rochas 5

Como consequência da acção dos agentes meteóricos sobre as rochas, estas vão sendo desagregadas originando fragmentos e grãos de diferentes dimensões, os chamados detritos ou clastos. A acção de desgaste e remoção dos diferentes detritos e soluções, que acontece a seguir ou em simultâneo à meteorização, chama-se erosão. Os agentes são, praticamente, os mesmos que actuam na meteorização. O vento, por exemplo, tem uma acção importante principalmente nos locais onde os produtos da meteorização não estão protegidos por vegetação ou outros obstáculos. O vento arranca detritos incoerentes e secos. Este fenómeno denomina-se deflação. Arrastando consigo os detritos arrancados, o vento, próximo do solo, provoca a erosão das rochas, podendo originar um modelado designado por blocos pedunculados (massas rochosas escavadas na parte inferior). Este tipo de erosão eólica denomina-se corrasão. A acção erosiva causada pelos diferentes tipos de águas (pluviais, fluviais, subterrâneas, lacustres, marinhas, glaciares, etc.) é sobejamente conhecida. Por exemplo, a capacidade de erosão de um rio é máxima quando experimenta grandes cheias e a sua água atinge grande velocidade. A velocidade de desgaste do leito do rio depende do caudal, do declive, da natureza dos detritos arrastados e das rochas constituintes do leito, e varia ao longo do curso do rio.
Como acabamos de ver os materiais resultantes da meteorização, normalmente, não ficam no seu local de origem. São deslocados para outros locais pelos ventos, gravidade, águas (estado líquido e sólido) -dissolução e detritos ou clastos- e seres vivos, particularmente pelo homem. Desta forma ocorre o transporte.
sedimentação ou deposição ocorre, em vários ambientes (deltaico, lagunar, marinho, torrencial, etc.), sobretudo por acção da gravidade. O agente transportador perde a força de arraste e deposita os detritos que transportava, segundo a dimensão e densidade dos detritos. Como resultado de sucessivos transportes e deposições formam-se camadas ou estratos de sedimentos, disposição característica da grande maioria das rochas sedimentares.
diagénese consiste nas mudanças ou transformações, químicas, físicas e biológicas, sofridas por um sedimento após a sua deposição. Inclui processos tais como: compactação e rearranjo espacial dos
compact.gif
Esquema da compactação dos sedimentos detríticos e circulação dos fluidos entre os poros.
solpres.jpg
Esquema do fenómeno da solução de pressão, reflectindo a dissolução dos grãos de um mineral resultado das pressões e a cimentação dos poros.

grãos, consolidação, cimentação, autigénese, substituição, solução de pressão, precipitação, recristalização, oxidação, redução, desidratação, hidratação, lexiviação, polimerização, adsorção, acção bacteriológica (exº origem do petróleo), os quais são normais na parte superficial da crosta terrestre. Os processos diagenéticos não só se iniciam logo após a deposição do sedimento, como têm um tempo variável na sua ocorrência.
As rochas sedimentares devem ser observadas como produtos finais de um complexo processo ( ver o esquema apresentado na página anterior).

Pela sua natureza, os processos e produtos da meteorização química originados pelos diferentes agentes são complexos e interdependentes. A dissolução, hidratação, hidrólise, oxidação, redução e lexiviação dos compostos mais solúveis combinam-se de formas diferentes de acordo com o tipo de rocha, o clima e a morfologia da região.





modcarsico.gif
Esquema simplificado de um modelado cársico numa formação calcária, resultante da acção dissolvente da água. A - Dolina; B - Campos de lapiás; C - Gruta com rio subterrâneo; D - Estalagmite; E - Estalactite; F - Algar; G - Exsurgência.
estalactestalag1.jpg
Aspecto de uma gruta numa formação calcária, mostrando as estalagmites e estalactites.

sábado, 23 de outubro de 2010

Conteúdo - Jazigos Minerais 2

Para compreendermos, em termos muito genéricos, a origem dos minerais que constituem os jazigos minerais é importante conhecermos as condições da sua formação. 
Os jazigos minerais são formados por processos magmáticos, isto é, derivam da cristalização directa de um magma (Rochas magmáticas), bem como por outros processos como iremos analisar. As principais causas para a deposição dos minérios, em muitos jazigos, envolvem mecanismos de precipitação que não resultam da simples diminuição da temperatura e pressão, tal como acontece com os magmas, mas que se associam com processos mais complexos, nomeadamente, envolvendo miscibilidade ou imiscibilidade de fluidos e reacções químicas entre fluidos e as rochas encaixantes. A interacção química dos fluidos com rochas da crosta superior desempenha, em muitos casos, um papel essencial na formação dos jazigos minerais. 
A classificação dos jazigos minerais permite traçar planos de trabalho essenciais à elaboração de estratégias de exploração e à avaliação de jazigos promissores. A prospecção consiste em diversos trabalhos geológicos e mineiros orientados para o conhecimento do valor económico de um jazigo mineral. Há várias classificações dos jazigos minerais consoante os critérios utilizados. Optamos por uma classificação baseada num critério genético. Os jazigos minerais que se formam no interior da crusta terrestre são designados por jazigos endogénicos, enquanto que os jazigos minerais que se formam à superfície da crusta terrestre são chamados jazigos exogénicos. Vejamos o esquema seguinte:

Esquema formação minerais
Esquema, a traços largos, da formação dos minerais.
paragénese que consiste numa associação característica de minerais formada pelo mesmo processo genético, também definida como ordem sequencial pela qual os minerais ocorrem nas rochas, é igualmente importante na avaliação de jazigos promissores. O conhecimento da paragénese dos minerais é muito importante, na medida em que permite prever a presença de um determinado mineral ou excluir a existência de outros. Vejamos o seguinte exemplo: numa rocha magmática que apresenta como minerais mais abundantes (principais) olivina e piroxena, é previsível a presença de calcopirite, pirite, platina e pentlandite, sendo de excluir a presença de quartzo, cassiterite e outros.
Observando o esquema da formação dos minerais acima representado e de forma muito sucinta podemos dizer que o processo endógeno apresenta como figuras centrais o magmatismo e o metamorfismo. O magma quando ascende às camadas superiores da crusta terrestre começa a arrefecer e a solidificar lentamente. Durante a sua ascensão derrete e engloba parte das rochas encaixantes, alterando a sua composição química original. O arrefecimento do magma provoca a separação de fluidos e materiais sólidos, bem como a diferenciação magmática (processo que conduz à formação de magmas com composição química diferente a partir do mesmo magma). Deste modo, ao longo da diferenciação magmática formam-se diversas rochas. Assim, podemos imaginar um magma em que, numa primeira fase de arrefecimento, se formam cristais de olivina, piroxenas e algumas plagióclases calcossódicas que se vão acumulando no fundo da câmara magmática por ordem da sua formação e das suas densidades, formando uma rocha chamada gabro. O magma residual, magma com gabro, fica mais rico em sílica, alumínio e potássio, porque a maior parte do magnésio, ferro e cálcio foi consumida na formação da olivina, piroxenas e plagióclases calcossódicas. O arrefecimento deste magma com gabro pode dar origem à formação de uma rocha como o granito, composta essencialmente por quartzo, micas (moscovite e biotite) e feldspato potássico. Na fase final da solidificação do magma, é frequente a formação de rochas ígneas de textura extremamente grosseira, encontradas geralmente sob a forma de diques irregulares, lentes ou veios, chamadas pegmatitos. Caracterizam-se pela ocorrência frequente de minerais raros, de grande importância económica, ricos em elementos como lítio, boro, flúor, nióbio, tântalo, urânio, terras raras e zircónio. Os fluidos residuais do magma, ricos de elementos com baixo ponto de fusão (boro, flúor, lítio, etc.) desempenham um papel importante. Estes fluidos escapam-se do magma e sobem pelas fracturas (falhas) das rochas encaixantes chegando, por vezes, a atingir a superfície crusta terrestre. Em simultâneo vão arrefecendo dando origem a novos minerais que preenchem as fracturas (falhas). Este tipo de formação de minerais chama-se hidrotermal. Quando existem elementos de metais pesados naqueles fluidos formam-se filões metalíferos. As emanações de gases nasfumarolas e sulfataras, por vezes, dão origem a vários minerais, tais como enxofre, calcite, aragonite, calcedónia ou o cinábrio.
Todas as rochas quando expostas à superfície da crusta terrestre (processo exógeno) sofrem a influência da atmosfera (oxigénio, anidrido carbónico,...), da hidrosfera (água), das variações de temperatura e da acção dos organismos vivos. São factores que desagregam as rochas, isolando os minerais que as compõem ou transformando-os em novos minerais. Este processo é lento mas constante, chamando-se meteorização. O transporte e a deposição (Ver Rochas sedimentares) dos minerais úteis, desagregados ou formados de novo, conduz à formação dos jazigos sedimentares.
As rochas magmáticas, sedimentares e metamórficas quando sujeitas à acção das condições físicas e químicas existentes nas profundidades da crusta terrestre, sofrem modificações em virtude das elevadas pressões, das temperaturas e de reacções químicas. Altera-se a sua textura, bem como as suas propriedades físicas e químicas, dando origem a novas paragéneses de minerais. Este processo denomina-se metamorfismo e, como é óbvio, é um processo endógeno.

quinta-feira, 21 de outubro de 2010

Conteúdo - Tipos de Erupções Vulcânicas

Depois da análise deste Tema, bem como da Tectónica de Placas, ficamos a saber que a maior parte das erupções vulcânicas ocorrem ao longo dos limites das placas tectónicas. Com o actual conhecimento de que dispomos dos mecanismos da Terra e seu funcionamento, é possível fazer previsões acerca das probabilidades de ocorrência das erupções vulcânicas. Mas ainda não é possível prever a data exacta destes acontecimentos, bem como a sua real dimensão, há muito que investigar pois, tal como a Terra, o conhecimento é dinâmico. Para terminarmos este Tema passamos a mostrar algumas fotografias elucidativas de alguns aspectos do vulcanismo.

Esquema de erupção fissural
Esquema representativo de uma erupção do tipo fissural.
Erupção fissural na Islândia
Erupção fissural na Islândia.
Vulcão Sakurajima
Vulcão Sakurajima, no Japão.
Pinatubo nas Filipinas
Vulcão Pinatubo, nas Filipinas.
Fluxo de piroclastos
Piroclastos emitidos numa das erupções do vulcão Stromboli.
Cinzas vulcânicas do Galungung
Cinzas vulcânicas emitidas pela erupção do vulcão Galungung, na Indonésia, em 1982.
Kilauea, Havai
Erupção do vulcão Kilauea, no Havai, em 1960.
Rios de lava do Kilauea
Rios de lava produzidos pelo vulcão Kilauea, no Havai, em 1960.

domingo, 17 de outubro de 2010

Conteúdo - Formação de Montanhas 7

Colisão India-Eurásia
A figura mostra, de forma esquemática, o deslocamento, para Norte, do "Continente Indiano", desde há 71 M.A. até à actualidade. De salientar a rotação anti-horária, simultânea com a deslocação, do "Continente Indiano", o qual prossegue actualmente. A colisão do "Continente Indiano" com a Eurásia ocorreu há aproximadamente 55 M.A.. A posição de Zanskar (vêr texto e figuras da página anteror) é mostrada por uma estrela negra.
Himalaias
A figura mostra um mapa topográfico, muito simplificado, dos Himalaias, Planície do Ganges e o Planalto Tibetano. As setas a negro indicam o sentido do movimento relativo e actual das placas convergentes Indiana e Eurasiática.
Esquemas Himalaias Tibete
A figura mostra dois cortes esquemáticos, feitos de acordo com um provável mecanismo (vêr texto na página anterior) responsável pela formação da Cadeia Montanhosa dos Himalaias e do Planalto Tibetano. O esquema do topo mostra o que terá acontecido no momento geológico da colisão das duas placas, ANTES da formação dos Himalaias. O esquema da base mostra o que terá acontecido DEPOIS da formação dos Himalaias.


A placa Indiana continua a deslocar-se para Norte à velocidade aproximada de 2 centímetros por ano. Por esta razão os Himalaias continuam a aumentar a sua altitude à razão de, aproximadamente, 5 milímetros por ano. Isto significa que os Himalaias estão geologicamente ativos e estruturalmente instáveis. Deste modo, os sismos são uma ocorrência frequente em toda a região dos Himalaias. É através de uma tecnologia moderna chamada o Sistema de Posicionamento Global (GPS) que se torna possível medir o lento movimento das placas bem como o aumento de altitude.
Monte do Evereste é o pico montanhoso mais elevado do mundo, situado na cordilheira dos Himalaias, dentro do sector meridional da Ásia Central, na fronteira entre o Nepal e a região autónoma do Tíbete na China. A altitude deste pico, em 1954, foi determinada como sendo de 8.848 m acima do nível do mar. Porém, estudos mais recentes, com a ajuda do Sistema de Posicionamento Global (GPS), determinaram uma altitude dois metros mais elevada, isto é, o pico do Monte Evereste tem, na realidade, 8.850 metros de altitude.

segunda-feira, 11 de outubro de 2010

Conteúdo - Tectónica de Placas 7


Os limites divergentes ocorrem ao longo das placas que estão em movimento de separação (afastamento; divergente) e a nova crusta é criada pelo magma que se eleva do manto. A imagem, é a de duas "correias" gigantes transportadoras, semelhantes a tapetes rolantes, enfrentando-se mas movendo-se, lentamente, em sentidos opostos transportando a crusta oceânica recentemente formada a partir da crista oceânica. Talvez, os limites divergentes melhor conhecidos sejam os da crista oceânica Médio-Atlântica (Meso-Atlântica). Esta gigantesca montanha submersa, estende-se desde o Oceano Árctico até ao extremo sul de África. A velocidade de expansão (afastamento) das placas ao longo da crista oceânica Médio-Atlântica é de aproximadamente 2,5 centímetros por ano (cm/ano), ou de25 quilómetros num milhão de anos. Esta velocidade de expansão pode parecer lenta para os padrões humanos, mas porque este processo teve a sua origem há cerca de 200 milhões de anos, resultou num afastamento das placas da ordem dos milhares de quilómetros. A expansão do fundo oceânico ao longo dos 200 milhões de anos passados fez com que o Oceano Atlântico crescesse a partir de uma minúscula entrada de água, entre os continentes da Europa, África e das Américas, dando origem ao vasto oceano que hoje existe. A Islândia, é um país vulcânico, que está sobre a dorsal Médio-Atlântica, oferecendo aos cientistas um laboratório natural para estudarem, em terra, os processos que ocorrem ao longo das partes submersas de uma crista médio-oceânica. A Islândia está a abrir ao longo do centro, expandindo-se entre as placas Norte-Americana e Euro-Asiática, dado que a América do Norte está em movimento para Oeste relativamente à Euro-Ásia.

limites entre placas

Já anteriormente foi referido que o tamanho da terra não mudou significativamente durante os últimos 600 milhões de anos, e muito provavelmente logo após sua formação há 4,6 bilhões de anos. O tamanho da terra, praticamente constante desde a sua formação, implica que a crusta tem de ser destruída segundo uma velocidade mais ou menos idêntica à que está a ser criada. Tal destruição (reciclagem) da crusta ocorre ao longo dos limites convergentes das placas que se movem uma contra a outra. Uma placa afunda-se (subducção) sob a outra. A região onde uma placa mergulha por baixo de outra é chamada zona de subducção. O tipo de convergência -- chamada por alguns uma " colisão muito lenta " -- que ocorre entre placas depende do tipo de litosfera envolvido. A convergênciapode ocorrer entre uma placa oceânica e uma continental, entre duas placas oceânicas, ou entre duas placas continentais.
zona entre duas placas que deslizam horizontalmente, uma em relação à outra, é chamada um limite de falha transformante, ou simplesmente um limite transformante. O conceito de falhas transformantes, foi proposto pelo geofísico canadense J. Tuzo Wilson, tendo determinado que estas falhas ou grandes zonas de fractura ligam dois centros de expansão (limites divergentes de placas) ou, menos frequentemente, centros de destruição, as fossas (limites convergentes de placas). A maioria das falhas transformantes são encontrados no fundo oceânico. Deslocam, geralmente, as dorsais activas (em expansão), originando margens da placa em "zig-zag". Aqui, têm origem, geralmente, os tremores de terra de baixa profundidade, também designados sismos rasos. Algumas falhas transformantes ocorrem nos continentes, por exemplo, a zona de falha de Santo André (San Andreas) na Califórnia e a falha Alpina na Nova Zelândia.

américa, áfrica, europa

Nem todos os limites das placas são tão simples quanto os tipos principais discutidos acima. Em algumas regiões da terra, os limites não estão bem definidos porque a deformação da placa em movimento que ali ocorre estende-se sobre uma larga região (chamada uma zona do limite entre placas). Uma destas zonas marca a região Mediterrânica-Alpina entre as placas Euro-Asiática e Africana, na qual diversos fragmentos menores das placas (microplacas) foram reconhecidos. Porque as zonas dos limites entre placas, envolvem pelo menos duas grandes placas e uma ou mais microplacas, tendem a ter estruturas complicadas.

sábado, 9 de outubro de 2010

Conteúdo - Estudo dos Fósseis


O estudo do registo fóssil revela que as formas de vida mudaram ao longo do tempo geológico, sugerindo reconstituições que permitem representar a história da vida.
Charles Darwin (1809-1882), difundiu a ideia de que as criaturas da Terra, incluindo o Homem, não eram criações imutáveis de Deus, mas o produto de um processo de descendência acompanhado de modificações, ou evolução, como veio a ser conhecido.
Para os cientistas da era pós-darwiniana, as semelhanças entre as espécies são a expressão de uma relação evolutiva compartilhada, derivando, em última análise, todas as espécies de um único antepassado comum (ou de um número muito restrito de antepassados). Por conseguinte o conceito de descendência acompanhada de modificações transformou a estática Grande Cadeia do Ser no registo histórico de um processo dinâmico de evolução.
Quando Darwin publicou "A Origem das Espécies", em 1859, expôs as suas expectativas da seguinte forma: «Tive em vista dois objectivos diferentes. Primeiro, demonstrar que as espécies não tinham sido criadas separadamente. Segundo, que a selecção natural fôra o principal agente da mudança.» Darwin teve êxito imediato quanto ao primeiro objectivo, mas o segundo só muito mais tarde, na década de 1940, foi reconhecido. Quando "A Origem das Espécies" foi publicado, a noção de evolução era fruto de grandes discussões entre os cientistas da época, deste modo o livro de Darwin encontrou um público receptivo na comunidade científica, embora não tanto nos círculos religiosos. "A Origem das Espécies", era uma abrangente compilação de factos, a partir de observações de história natural, geologia, embriologia e paleontologia. O peso das provas era indesmentível, pelo que a transmutação foi aceite como facto comprovado. Contudo, a selecção natural, baseada na hereditariedade de variação genética favorável, era encarada com cepticismo. Um dos motivos para essa atitude residia no facto de, na altura, pouco se saber acerca dos mecanismos da mudança genética e da hereditariedade.
Gregor Mendel (1822-1884) lançou os fundamentos da genética moderna com as suas criações experimentais de ervilhas, em 1865. O seu trabalho demonstrou que a hereditariedade de características, tais como a cor e a forma, era atomística, isto é, determinada por entidades genéticas discretas. Contudo as conclusões de Mendel foram ignoradas durante quatro décadas.
No entanto, durante a década de 1930, o tratamento matemático da genética mendeliana, levado a cabo por três investigadores, os ingleses Ronald A. Fisher (1890-1962) e J. B. S. Haldane(1892-1964) e o americano Sewell Wright (1889-1988), demonstrou que a herança de unidades genéticas discretas, hoje conhecidas com "genes", era compatível com a variação contínua de características verificadas em diferentes populações. A teoria de Darwin dispunha agora do que lhe faltara durante meio século, a fundamentação numa teoria de herança bem comprovada. Esta visão matemática, combinada com uma mais vasta compreensão da biologia das populações, resgatou o agente chave da mudança evolutiva de Darwin, tornando-se a selecção natural o eixo da moderna teoria da evolução. A publicação, em 1942, de um livro da autoria de Julian Huxley (1887-1975), intitulado «Evolução - a Síntese Moderna», estabeleceu o marco para o início da teoria moderna, também conhecida por "neodarwinismo". O neodarwinismo revelou-se tão poderoso que se tornou o tema unificador de toda a biologia. As modificações sucessivas que formam a substância da selecção natural passaram a ser encaradas como fonte de toda e qualquer mudança evolucionária, desde as mais ligeiras alterações, como na cor de uma espécie, até novidades de maior vulto, tais como o emergir do sistema reprodutor dos mamíferos a partir dos répteis, seu precursor. Segundo este modo de ver, as grandes modificações eram o mesmo que pequenas modificações, extrapoladas para uma escala maior.

Esboço esquemático da árvore genealógica das espécies.
Classificação evolutiva aplicada aos tetrápodes (vertebrados terrestres quadrúpedes). Esta classificação reflecte as relações de antepassado-descendente entre os répteis (a vermelho) e as aves ou os mamíferos (a azul). As relações precisas de parentesco entre os tetrápodes actuais e algumas formas fósseis, mostram que os répteis não constituem um grupo natural e que o antepassado comum dos répteis é também o antepassado comum dos mamíferos e das aves.
Era inevitável que uma visão tão radicalista sofresse contestação. E foi assim que, em 1972, os paleontólogos americanos Niles Eldredge e Stephen Jay Gould contrapuseram que a selecção natural, tal como era expressa no neodarwinismo, não era suficiente para explicar o padrão evolucionário observado nos vestígios fósseis. As espécies não mudam contínua e gradualmente ao longo da sua existência, antes tendendo a permanecer imutáveis uma vez evoluídas, e depois desaparecendo ou modificando-se rapidamente passado um longo período de tempo. Foi considerável o debate suscitado quanto à realidade do padrão descrito por Eldredge e Gould, bem como aos mecanismos a ele subjacentes. Durante a última década, o assunto foi examinado em pormenor, revelando que a modificação evolutivaé umas vezes gradual e outras pontual. Resta saber se é mais provável o aparecimento de novas espécies como resultado da mudança gradual ou pontual, mas isso permanece em aberto.
O mecanismo da selecção natural implica que o êxito de uma espécie seja determinado pelo seu grau de adaptação às circunstâncias prevalecentes, incluindo a interacção com outras espécies, ou nas palavras de Darwin, a luta pela sobrevivência. Uma espécie que não consegue competir pode extinguir-se. Contudo, quando há uma extinção em massa, estas regras alteram-se. Seja qual for a causa, as extinções em massa escolhem como suas vítimas espécies cujas características nada têm a ver com ter êxito ou falhar em condições normais. Por conseguinte, quando se dão extinções em massa, muitas espécies desaparecem, enquanto novas espécies emergem de entre os sobreviventes.

quinta-feira, 7 de outubro de 2010

Conteúdo - Formação de Rochas 4






esqambrocsed1.jpg
Esquema simplificado da génese das rochas sedimentares.


É vulgar observarem-se, na Natureza, rochas com formas caprichosas e nós vamos tentar dar uma explicação para a origem de algumas dessas formas nas rochas.
erosmarinhacalcario.jpg
Erosão marinha de estratos ou camadas calcárias.
grandcanion1.jpg
Erosão pluvial, fluvial e eólica de estratos de arenitos e calcários.

Para começarmos vamos olhar para o esquema da génese das rochas sedimentares, apresentado à esquerda da página, e fazer uma análise sucinta do mesmo. As rochas expostas à superfície da crosta terrestre ficam sujeitas às acções físicas e químicas exercidas pelo contacto com a atmosfera (temperatura e vento), hidrosfera (água) e biosfera (seres vivos). A meteorização não é mais que o resultado das acções físicas e químicas sobre as rochas. Como consequência, as rochas são gradualmentealteradas e desagregadas. Assim, temos a desintegração das rochas por meios mecânicos e a decomposição das mesmas por meios químicos. Evidentemente, estes dois processos não actuam separadamente mas, função das diferentes condições climáticas há um que é predominante sobre o outro. A desagregação ou desintegração acontece pela contracção e expansão provocadas pelas variações de temperatura, facilitada pela existência de fendas, as diáclases, resultantes quer das condições de arrefecimento das rochas ígneas, quer do relaxamento da pressão durante a acção das forças tectónicas. As diáclases enchem-se de água das chuvas e, sobretudo, à noite quando se dá o abaixamento da temperatura, a água gela e aumenta de volume, partindo as rochas por efeito da pressão. Quando a rocha é porosa, a água penetra mais profundamente e o aumento de volume por congelação da água provoca tensões internas capazes de a fragmentar. Também, as variações de temperatura entre o dia e a noite, implica que os distintos coeficientes de dilatação dos minerais que formam as rochas se traduzam em tensões que tendem a aumentar as fissuras e diáclases existentes. Os seres vivos, sobretudo, as raízes de árvores que se desenvolvem nas fissuras, ao crescerem partem grandes blocos com facilidade.
decomposição das rochas por meios químicos envolve, quase sempre, a presença de água que actua, particularmente, como dissolvente. A decomposição pordissolução é desigual nas distintas rochas, dependendo dos minerais que as constituem. O quartzo é dificilmente solúvel, ao contrário da calcite que é muito solúvel em águas ricas em CO2 (ver esquema de um modelado cársico na página seguinte). A dissolução efectua-se tanto à superfície, pelas águas de escorrência, como em profundidade pela acção das águas subterrâneas, bem como próximo da superfície pelas águas de infiltração. A água, ao realizar esta acção, actua ao mesmo tempo como agente de transporte das substâncias dissolvidas.

sexta-feira, 24 de setembro de 2010

Conteúdo - Ciclo das Rochas









ciclogeoms.jpg
Esquema do ciclo das rochas, litológico ou petrogenético.

As noções de rochas magmáticas ou ígneas, metamórficas e sedimentares conduzem-nos a uma relação de inter-dependência entre as rochas, representada no esquema do ciclo das rochas. Podemos afirmar que as rochas transformam-se umas nas outras ao longo do tempo geológico.
Assim, e analizando o esquema acima representado, a partir de um magma profundo originam-se rochas ígneas ou magmáticas. Os processos geodinâmicos externos - meteorização, erosão, transporte, sedimentação - originam sedimentos a partir de qualquer rocha preexistente. Os sedimentos dão origem, por diagénese, a rochas sedimentares. Quando os sedimentos alcançam profundidades elevadas da crosta terrestre, ocorrem fenómenos de metamorfismo e originam rochas metamórficas, ou podem fundir originando um magma. As rochas metamórficas e ígneas podem entrar em fusão dando origem ao magma. Deste modo fecha-se o ciclo.
Terra, aparentemente estável, está em constante transformação. Os fenómenos que ocorrem à superfície e em profundidade sucedem-se ciclicamente, á escala do tempo geológico.
Num sistema dinâmico fechado, como é a Terra "Viva", cada um dos seus componentes participa em um ou vários tipos de ciclos diferentes (Exemplos: ciclo hidrológico, do oxigénio, do carbono, biológico). Não esqueçamos também que estes ciclos se interralacionam dum modo complexo.

quinta-feira, 23 de setembro de 2010

Conteúdo - Jazigos Minerais 1


Este Tema faz parte da Geologia Aplicada, um dos domínios da Geologia. Muitos minerais e rochas são matérias primas vitais para o Homem, apresentando uma grande importância industrial e social, sendo a sua descoberta e exploração essenciais para o progresso e continuidade do Homem. A extracção e transformação de substâncias minerais é essencial ao desenvolvimento e bem estar das sociedades contemporâneas. Nomeadamente, a actividade de determinados sectores da indústria transformadora de um país depende da capacidade de obtenção de matérias-primas minerais, seja pela sua aquisição no mercado internacional, seja pela utilização dos recursos do território nacional.

Jazigos Minerais são acumulações ou concentrações locais de rochas e minerais úteis ao homem que podem ser exploradas com lucros. Quase todos os processos de concentração de mineraisenvolvem movimentos de fluidos (líquidos e gases), como iremos ver mais à frente. Podemos reunir os fluidos em três categorias: 1) fluidos de origem magmática (ígnea), 2) águas provenientes da atmosfera, 3) fluidos associados a processos metamórficos, isto é, fluidos presentes nas rochas que são postos em movimento pelas variações de pressão e temperatura.

Minério é qualquer mineral explorado para um fim utilitário. O minério em bruto, normalmente, é constituído por uma mistura do mineral desejado (útil) e de minerais não desejados, os quais são designados por ganga.

Cristais de magnetite
Cristais idiomórficos octaédricos de magnetite (M=minério de ferro), sendo G a ganga constituída por quartzo.

Clarke é uma unidade de medida correspondente à percentagem média de um elemento existente na crusta terrestre, o mesmo que abundância média de um elemento pertencente à crusta terrestre. Na tabela abaixo representada, observamos que muitos elementos estão presentes em muito baixas concentrações.
CLARKES DE ALGUNS ELEMENTOS ECONÓMICOS, EM PARTES POR MILHÃO (PPM) OU GRAMAS POR TONELADA (g/T)
Elemento
Clarke
Elemento
Clarke
Elemento
Clarke
Alumínio
81.300
Chumbo
13
Prata
0,07
Antimónio
0,2
Lítio
20
Tântalo
2
Berílio
2,8
Manganésio
950
Estanho
2
Crómio
100
Mercúrio
0,08
Urânio
1,8
Cobalto
25
Molibdénio
1,5
Vanádio
135
Cobre
55
Níquel
75
Tungsténio
1,5
Ouro
0,004
Nióbio
20
Zinco
70
Ferro
50.000
Platina
0,01


Após a análise da tabela verificamos que existem elementos, como o alumínio e o ferro que são abundantes. Contudo, as suas concentrações económicas só interessam quando ocorrem sob a forma de óxidos simples, hidróxidos ou, no caso do ferro, como carbonatos. Isto porque, geralmente, estão alojados na rede espacial dos minerais silicatados (as leis da química regulam a união de átomos para formar moléculas), o que impede a sua fácil separação e recuperação económica.
Na tabela seguinte e de forma muito sintética apresentamos alguns dos elementos mais utilizados na indústria transformadora, bem como alguns minerais mais comuns a partir dos quais aqueles elementos são extraídos.

Elementos e respectivos símbolos químicos
Minerais mais comuns e respectivas composições químicas
Alumínio, Al
Bauxite, mistura de hidróxidos de alumínio e minerais argilosos
Antimónio, SbEstibina (antimonite), Sb2S3
Jamesonite, Pb4FeSb6S14
Arsénio, AsArsenopirite, FeAsS
Berílio, BeBerilo, Be3Al2Si6O18
Bismuto, BiBismuto nativo, Bi
Bismutinite, Bi2S3
Bismite, Bi2O3
Cádmio, CdGreenockite, CdS
Crómio, CrCromite, (Fe, Mg)Cr2O4
Cobalto, CoCobaltite, CoAsS
Cobre, CuCobre nativo, Cu
Cuprite, Cu2O
Calcopirite, CuFeS2
Calcosite, Cu2S
Malaquite, Cu2[(OH)2CO3]
Azurite, Cu3[OH CO3]2
Covelite, CuS
Ferro, FeMagnetite, Fe3O4
Hematite, Fe2O3
Limonite, FeOOH-nH2O
Siderite, FeCO3
Pirite, FeS2
Chumbo, PbGalena, PbS
Anglesite, PbSO4
Cerussite, PbCO3
Magnésio, MgMagnesite, MgCO3
Manganés, MnPirolusite, MnO2
Mercúrio, HgCinábrio, HgS
Molibdénio, MoMolibdenite, MoS2
Níquel, NiPentlandite, (Ni, Fe)9S8
Niquelina, NiAs
Cloantite, (Ni, Co)As3
Garnierite, (Ni, Mg)6[(OH)8Si4O10
Ouro, AuOuro nativo, Au
Silvanite, AgAuTe4
Calaverite, AuTe2
Prata, AgPrata nativa, Ag
Argentite, Ag2S
Silvanite, AgAuTe4
Estefanite, Ag5SbS4
Estanho, SnCassiterite, SnO2
Estannite, Cu2FeSnS4
Titânio, TiRútilo, TiO2
Ilmenite, FeTiO3
Tungsténio, WVolframite, (Fe, Mn)WO4
Schelite, CaWO4
Urânio, UUraninite, UO2
Torbernite, Cu(UO2)2P2O8-12H2O
Autunite, Ca(UO2)2P2O8-8H2O
Vanádio, VDescloizite, Pb(Zn, Cu)[OH VO4]
Vanadinite, Pb5[Cl (VO4)3]
Zinco, ZnZincite, ZnO
Esfalerite (blenda), ZnS
Smithsonite, ZnCO3

terça-feira, 21 de setembro de 2010

Conteúdo - Téctónica de Placas

Os vulcões não estão distribuídos à superfície da Terra de forma aleatória. A maioria está concentrada nas regiões limítrofes dos continentes, ao longo das cadeias montanhosas, ou nos oceanos ao longo das dorsais (ver mapa). Mais de metade dos vulcões activos, acima do nível do mar, situam-se no Oceano Pacífico no chamado "Anel de Fogo". O "Anel de Fogo" é uma faixa circum-pacífica que se estende para norte ao longo das cordilheiras norte-americanas, passa pelas ilhas Aleutas e prossegue para sul passando pelo Japão, as Filipinas até à Nova Zelândia. Tal como já dissemos as posições dos vulcões estão directamente relacionadas com a Tectónica de Placas (zonas de subducção (fossas), dorsais e riftes). Contudo, alguns vulcões activos não estão associados aos limites de placa, sendo estes vulcões designados por "intra-placa". Os vulcões havaianos fornecem o melhor exemplo de uma corrente vulcânica de "intra-placa", desenvolvida no interior da Placa Pacífica que passa sobre "um ponto quente", relativamente estacionário, o qual fornece o magma para alimentar os novos vulcões activos.

Vulcões activos
Mapa mostrando a distribuição mundial dos vulcões activos, as principais placas tectónicas e os respectivos limites divergentes e convergentes, bem como a localização do "Anel de Fogo".


Islândia é a maior parcela de terra inteiramente de origem vulcânica, formada por planaltos de lava expelida através de fracturas (actividade vulcânica tipo fissural) ou por grandes vulcões de forma cónica (actividade vulcânica tipo central). O complexo vulcânico da Islândia cobre uma área de, aproximadamente, 100.000 quilómetros quadrados atingindo, em certos locais, alturas de mais de 2 quilómetros acima do nível do mar. A rocha vulcânica predominante é o basalto, já o dissemos.
Em virtude da sua posição em relação à Dorsal Médio-Atlântica (ver mapa modelo) a Islândia está em contínua expansão, sendo as duas metades estiradas pela expansão dos fundos oceânicos (Ver o Tema Tectónica de Placas) onde assenta. As forças de tensão provocam o desenvolvimento de fracturas crustais dispostas paralelamente ao eixo da crista oceânica que, por vezes, funcionam como condutas para as erupções vulcânicas tipo fissural e central. As rochas mais antigas (cerca de 15 MA) da Islândia encontram-se nos extremos ocidental e oriental, e na actualidade a actividade vulcânica limita-se, praticamente, à parte central da ilha directamente situada sobre a crista médio-atlântica, razão porque esta ilha constitui um laboratório para o estudo dos mecanismos físicos da expansão dos fundos oceânicos.


Mapa modelo mostrando a dorsal ou crista médio-atlântica em expansão e a localização da Islândia disposta ao longo da dorsal.