Páginas

segunda-feira, 7 de julho de 2014

Conteúdo - Terra

Da perspectiva na Terra, o nosso planeta parece ser grande e robusto, com um oceano interminável de ar. Do espaço, os astronautas muitas vezes têm a impressão de que a Terra é pequena, e tem uma fina e frágil camada de atmosfera. Para um viajante do espaço, as características que distinguem a Terra são as águas azuis, as massas de terra verdes e castanhas, e o conjunto de nuvens brancas contra um fundo negro.
Muitos sonham em viajar pelo espaço e ver as maravilhas do universo. Na realidade, todos nós somos viajantes espaciais. A nossa nave é o planeta Terra, viajando a uma velocidade de 108.000 quilómetros (67.000 milhas) por hora.
A Terra é o terceiro planeta a contar do Sol, a uma distância de 150 milhões de quilómetros (93,2 milhões de milhas). Demora 365,256 dias para girar em volta do Sol e 23.9345 horas para a Terra efectuar uma rotação completa. Tem um diâmetro de 12.756 quilómetros (7.973 milhas), apenas poucas centenas de quilómetros maior que o de Vénus. A nossa atmosfera é composta por 78 por cento de azoto, 21 por cento de oxigénio e 1 por cento de outros componentes.
A Terra é o único planeta conhecido a abrigar vida, no sistema solar. O núcleo do nosso planeta, de níquel-ferro fundido girando rapidamente, provoca um extenso campo magnético que, junto com a atmosfera, nos protege de praticamente toda a radiação prejudicial vinda do Sol e outras estrelas. A atmosfera da Terra protege-nos dos meteoros, cuja maioria se queima antes de poder atingir a superfície.
Das nossas viagens pelo espaço, temos aprendido muito sobre o nosso próprio planeta. O primeiro satélite Norte-americano, Explorer 1, descobriu uma intensa zona de radiação, agora chamada de cintura de radiação de Van Allen. Esta cintura é formada por uma camada de partículas carregadas que são capturadas pelo campo magnético da Terra numa região, de formato toroidal, em volta do equador. Outras descobertas feitas por satélites mostram que o campo magnético do nosso planeta é distorcido, tendo uma forma de gota, devido ao vento solar. Também sabemos agora que a nossa fina atmosfera superior, a qual se acreditava ser calma e sem incidentes, ferve de actividade -- expandindo-se de dia e contraindo-se à noite. A atmosfera superior, afectada pelas mudanças na actividade solar, contribui para o clima e meteorologia na Terra.
Além de afectar a meteorologia da Terra, a actividade solar causa um dramático fenómeno visual na nossa atmosfera. Quando as partículas carregadas do vento solar são capturadas pelo campo magnético da Terra, colidem com as moléculas de ar da nossa atmosfera acima dos pólos magnéticos do planeta. Estas moléculas de ar tornam-se então incandescentes e são assim conhecidas como auroras ou luzes do norte e do sul.


Estatísticas sobre a Terra
 Massa (kg)5,976e+24 
 Massa (Terra = 1)1.0000e+00 
 Raio equatorial (km)6.378,14 
 Raio equatorial (Terra = 1)1,0000e+00 
 Densidade média (g/cm^3)5,515 
 Distância média do Sol (km)149.600.000 
 Distância média do Sol (Terra = 1)1,0000 
 Período de rotação (dias)0,99727 
 Período de rotação (horas)23,9345 
 Período Orbital (dias)365,256 
 Velocidade orbital média (km/s)29,79 
 Excentricidade orbital0,0167 
 Inclinação do Eixo (graus)23,45 
 Inclinação orbital (graus)0,000 
 Velocidade de escape no equador (km/s)11,18 
 Gravidade à superfície no equador (m/s^2)9,78 
 Albedo visual geométrico0,37 
 Temperatura média à superfície15°C 
 Pressão atmosférica (bar)1,013 
 Composição atmosférica





Azoto
Oxigénio
Outros

77%
21%
2% 


Animações sobre a Terra




Vistas da Terra





América do Sul 

Esta imagem a cores da Terra foi obtida pela Galileo às 6:10 a.m., hora standard do Pacífico, em 11 de Dezembro de 1990, quando a nave estava a cerca de 1,3 milhões de milhas do planeta. A Galileo estava a fazer o primeiro de dois voos sobre a Terra, a caminho de Júpiter. A América do Sul está próxima do centro da foto, e o continente Antárctico, branco, iluminado pela luz solar, está logo abaixo. Pitorescas frentes meteorológicas são visíveis no Atlântico Sul, em baixo à direita. (Cortesia NASA/USGS) 


África 

A tripulação da Apollo 17 tirou esta fotografia da Terra em Dezembro de 1972 enquanto a nave viajava entre a Terra e a Lua. Os desertos laranja-avermelhados da África e da Arábia Saudita estão em forte contraste com o azul profundo dos oceanos e com o branco das nuvens e da neve cobrindo a Antárctida. (Cortesia NASA) 


Imagem da Terra em Infravermelho, colorida 

Esta imagem em infravermelho da Terra foi tirada pelo satélite GOES 6 em 21 de Setembro de 1986. Utilizou-se um limiar de temperatura para isolar as nuvens. A terra e o mar foram separados, e depois as nuvens, terra e mar foram coloridos separadamente e recombinados para produzir esta imagem. (Cortesia SSEC/UW-Madison/R.Kohrs)


Uma imagem semelhante em GIF de 900x900 pixel, mostrando o continente Africano, pode ser encontrada AQUI(Cortesia Rick Kohrs) 


A Terra & A Lua 

Oito dias após o seu encontro com a Terra, a nave Galileo foi capaz de olhar para trás e capturar esta visão da Lua orbitando a Terra, tirada a uma distância de cerca de 6,2 milhões de quilómetros (3,9 milhões de milhas), em 16 de Dezembro de 1990. A Lua está em primeiro plano, movendo-se da esquerda para a direita. A Terra, brilhante e colorida, contrasta fortemente com a Lua, que reflecte apenas cerca de um terço da luz solar em relação à Terra. O contraste e a cor de ambos os objectos foram realçados por computador para melhorar a visibilidade. A Antárctida é visível através das nuvens (embaixo). O 'lado oculto' da Lua é visto; a zona sombreada no final do alvorecer é o Polo Sul/Bacia Aitken, uma das maiores e mais antigas formações de impacto lunares. (Cortesia NASA) 


Vista da Terra & Lua, da Mariner 10 

A Terra e a Lua foram fotografadas pela Mariner 10 a 2,6 milhões de quilómetros, quando completava o primeiríssimo encontro Terra-Lua por uma nave capaz de enviar dados de imagens coloridas digitais de alta resolução. Estas imagens foram combinadas abaixo para ilustrar o tamanho relativo dos dois corpos. Deste particular ponto de vista, a Terra parece ser um planeta aquático! (Cortesia Mark S. Robinson) 


A Terra & A Lua 

Durante o seu voo, a nave Galileo enviou imagens da Terra e da Lua. Imagens separadas da Terra e da Lua foram combinadas para formar esta imagem. A nave Galileo tirou as fotografias em 1992, a caminho para explorar o sistema de Júpiter, em 1995-97. A imagem mostra uma vista parcial da Terra, centralizada no Oceano Pacífico, aproximadamente à latitude de 20 graus sul. A costa oeste da América do Sul pode ser observada, assim como as Caraíbas; formações brancas de nuvens rodopiantes indicam tempestades no Pacífico sudoeste. A distinta cratera de raios na parte debaixo da Lua é a bacia de impacto Tycho. As áreas lunares escuras são bacias de impacto preenchidas por lava solidificada. Esta foto contém as imagens da Terra e Lua com a mesma escala e cor relativa/albedo. (Cortesia USGS/NASA) 


Nordeste da África e Península Arábica 

Esta imagem do nordeste da África e da Península Arábica foi tirada de uma altitude de cerca de 500.000 quilómetros (300,000 milhas) pela nave Galileo, em 9 de Dezembro de 1992, quando ela deixava a Terra na sua rota para Júpiter. Estão visíveis a maior parte do Egipto (à esquerda no centro), incluindo o Vale do Nilo; o Mar Vermelho (ligeiramente acima do centro); Israel; Jordânia e a Península Arábica. No centro, abaixo de nuvens costeiras, está Cartum, na confluência do Nilo Azul e do Nilo Branco. A Somália (abaixo à direita) está parcialmente encoberta pelas nuvens. (Cortesia NASA/JPL) 


Ponta de África, Somália 

As cores laranja e castanha desta fotografia oblíqua da ponta leste de África mostram uma paisagem árida ou semi-árida na metade norte da Somália, país da África leste. Com excepção das áreas escuras onde pode ser encontrada a vegetação mais densa, uma grande parte da vegetação nesta parte da Somália é composta por arbustos e terras de erva. O clima geral nesta região consiste em temperaturas quentes e chuva dispersa e irregular. Duas bacias distintas de drenagem são caracterizadas por cores mais claras - o Vale Nugaaleed ao longo do lado oeste da fotografia e a outra linha de água em direcção à Península Hafun, ao longo da costa leste da Somália. A extensão para sul da Península da Arábia Saudita é visível a norte do outro lado do Golfo de Aden. (Cortesia NASA) 


Ponta Sul da Gronelândia 

A ponta sul da Gronelândia é vista nesta fotografia oblíqua, quase sem cores, da maior ilha do mundo. A escuridão do espaço contrasta com a brancura das nuvens, do gelo e da neve. A única cor verdadeira é o azul do Oceano Atlântico e do Mar do Labrador. As situações sem nuvens ao longo da área da costa sul realçam os profundos fiordes ao longo da costa. Um olhar mais atento sobre as áreas brancas revelam três características diferentes - neve e gelo em terra; formações de nuvens sobre a região centro e os lados leste e oeste da ilha; e massas de gelo em forma de feixe que se afastam da ponta sueste e da ponta sudoeste da costa de fiordes e são levadas pela corrente da zona leste da Gronelândia para sul-sueste, e ainda blocos de gelo maiores que se dirigem para norte ao longo da costa leste. A Gronelândia tem os únicos glaciares continentais sobreviventes do Hemisfério Norte. Esta folha de gelo cobre sete-oitavos da superfície da Gronelândia e estima-se que contém 11 por cento da água fresca do mundo. (Cortesia NASA) 


Antárctida 

Esta imagem da Antárctida foi tirada pela Galileo várias horas após voar próximo da Terra, em 8 de Dezembro de 1990. Esta é a primeira imagem de todo o continente Antárctico tirada do espaço. A Galileo estava a cerca de 200,000 quilómetros (125.000 milhas) da Terra quando a fotografia foi feita.


O continente gelado está cercado pelo escuro azul de três oceanos: o Pacífico à direita, o Índico no topo e uma parte do Atlântico, do lado inferior esquerdo. Quase todo o continente estava iluminado pelo Sol nessa época do ano, apenas duas semanas antes do solstício de Verão do sul. O arco de pontos escuros estendendo-se desde próximo do Polo Sul (próximo do centro) até à parte superior direita é a Cadeia de Montanhas Transantártidas. À direita das montanhas está o vasto Recife de Gelo Ross e a fronteira aguda do recife com as águas escuras do Mar de Ross. A fina linha azul ao longo do limbo da Terra define a atmosfera do nosso planeta. (Cortesia Calvin J. Hamilton) 




Missão Clementina 

Esta imagem em cor falsa foi tirada durante a missão Clementina. Ela mostra o ar brilhante da atmosfera superior como uma fina linha azul. O ponto brilhante abaixo é uma área urbana. (Cortesia Naval Research Laboratory) 


Mapa projectado da imagem da Terra (AVHRR) 

Esta imagem é uma projecção Homolosine da Terra preparada com dados de imagens do Radiómetro Avançado de Alta Resolução (Advanced Very High Resolution Radiometer - AVHRR). (Cortesia ESA/NASA/NOAA/USGS/CSIRO) 


América 

Este mapa das Américas do Norte e do Sul usa altimetria por radar para mostrar a topografia abaixo dos oceanos e dos continentes. (Cortesia NGDC) 


EUA 

Esta imagem é um mosaico dos Estados Unidos preparada com 16 imagens de sensores do Radiómetro Avançado de Alta Resolução nos satélites meteorológicos NOAA-8 e NOAA-9. As imagens foram tiradas entre 24 de Maio de 1984 e 14 de Maio de 1986.

Em mosaicos de infravermelho em cor falsa, a vegetação aparece em tons de vermelho, não de verde. O "vermelhão" indica a densidade de vegetação, o seu tipo e se cresce em terra seca ou num pântano (uma mistura de vegetação avermelhada e superfície de água azul escura produz tons escuros). Pradarias aparecem em vermelho claro, árvores caducas e plantações aparecem em vermelho, e florestas de coníferas aparecem em vermelho escuro ou castanho. Áreas desérticas aparecem brancas, e áreas urbanas (pavimentos e edificações) aparecem em verde azulado. Lagos, rios e oceanos aparecem em vários tons de azul, águas profundas em azul-escuro e águas rasas ou turvas em azul claro. Leitos de rochas expostas aparecem geralmente em tom verde-azulado escuro ou outro tom escuro. (Cortesia USGS)

domingo, 6 de julho de 2014

Conteúdo - Vénus

Vénus, a jóia do céu, era conhecida pelos primeiros astrónomos como estrela da manhã e estrela da tarde. Esses astrónomos pensavam que Vénus era composta por dois corpos distintos. Vénus, a deusa romana do amor e da beleza, está coberta por uma espessa camada de nuvens em turbilhão.
Os astrónomos referem-se a Vénus como o planeta irmão da Terra. São ambos semelhantes em dimensão, massa, densidade e volume. Ambos foram formados mais ou menos ao mesmo tempo e condensados a partir da mesma nebulosa. Contudo, nos últimos anos os cientistas descobriram que as semelhanças terminam aqui. Vénus é muito diferente da Terra. Não tem oceanos e está envolto por uma atmosfera pesada composta principalmente por dióxido de carbono e quase sem vapor de água. As suas nuvens são compostas por gotas de ácido sulfúrico. Na superfície, a pressão atmosférica é 92 vezes a da Terra ao nível do mar.
Vénus é queimado por uma temperatura à superfície de aproximadamente 482° C (900° F). Esta elevada temperatura deve-se principalmente a uma rápido efeito estufa originado pela pesada atmosfera de dióxido de carbono. A luz do Sol passa pela atmosfera e aquece a superfície do planeta. O calor é irradiado mas fica aprisionado pela densa atmosfera que não permite a sua fuga para o espaço. Isto torna Vénus mais quente que Mercúrio.
Um dia Venusiano tem 243 dias Terrestres e é mais longo que o seu ano de 225 dias. Curiosamente, Vénus gira de leste para oeste. Para um observador em Vénus, o Sol nasceria a oeste e teria o seu ocaso a leste.
Até há pouco tempo, a densa cobertura de nuvens de Vénus impediu a observação aos cientistas da natureza geológica da sua superfície. O aperfeiçoamento dos rádio-telescópios e sistemas de radares de imagem orbitando o planeta tornaram possível ver a superfície através do patamar de nuvens. Quatro das mais bem sucedidas missões a revelarem a superfície Venusiana são a Missão Pioneer Vénus da NASA (1978), as missões Soviéticas Venera 15 e 16 (1983-1984), e a missão Magalhães de mapeamento por radar da NASA (1990-1994). À medida que estas sondas começaram a mapear o planeta, uma outra imagem de Vénus se revelou.
A superfície de Vénus é relativamente nova, geologicamente falando. Parece ter sido refeita completamente há 300 a 500 milhões de anos atrás. Os cientistas debatem o como e porquê deste acontecimento. A topografia Venusiana é composta de vastas planícies cobertas de correntes de lava e montanhas ou regiões montanhosas deformadas por actividade geológica. O Maxwell Montes em Ishtar Terra é o pico mais alto de Vénus. A região montanhosa de Aphrodite Terra estende-se por quase metade de todo o equador. As imagens da missão Magalhães das regiões montanhosas acima de 2.5 quilómetros são habitualmente brilhantes, característica de um solo húmido. Contudo, água em estado líquido não existe à superfície e não é a responsável pelo brilho característico das regiões montanhosas. Uma teoria sugere que a matéria brilhante possa ser uma formação de compostos metálicos. Estudos feitos revelaram que o material poderá ser pirite (também conhecida por ouro dos trouxas). Este é instável nas planícies mas poderá ser estável nas regiões montanhosas. Este material poderá também ser algum tipo de material exótico que daria os mesmos resultados mas em concentrações mais baixas.
Vénus está marcado por numerosas crateras de impacto distribuídas aleatoriamente pela superfície. Pequenas crateras com menos de 2 quilómetros são praticamente inexistentes graças à pesada atmosfera Venusianas. As excepções ocorrem quando grandes meteoritos se fraccionam pouco antes do impacto, criando aglomerados de crateras. Vulcões e formações vulcânicas são ainda mais numerosas. Pelo menos 85% da superfície de Vénus está coberta de rocha vulcânica. Gigantescas correntes de lava, que se estendem por centenas de quilómetros, inundaram as zonas de baixo relevo criando vastas planícies. Mais de 100.000 pequenos vulcões preenchem a superfície juntamente com centenas de grandes vulcões. As correntes dos vulcões abriram longos e sinuosos canais que se prolongam por centenas de quilómetros, tendo um deles aproximadamente 7.000 quilómetros.
Foram encontradas, em Vénus, gigantescas caldeiras, com mais de 100 quilómetros de diâmetro. Algumas formações de Vénus são únicas, como as coronae e as aracnóides. Coronae são grandes formações ovais, rodeadas de penhascos com centenas de quilómetros de diâmetro. Pensa-se que são elevações do manto expressos na superfície. Aracnóides são formações circulares ou alongadas semelhantes às coronae. Ambas poderão ter aparecido como resultado de rochas fundidas deslizando pelas fracturas da superfície, produzindo sistemas de diques e fracturas radiais.




Estatísticas de Vénus
 Massa (kg)4.869e+24
 Massa (Terra = 1).81476
 Raio equatorial (km)6,051.8
 Raio equatorial (Terra = 1).94886
 Densidade média (gm/cm^3)5.25
 Distância média do Sol (km)108,200,000
 Distância média do Sol (Terra = 1)0.7233
 Período de rotação (dias)-243.0187
 Período orbital (dias)224.701
 Velocidade orbital média(km/s)35.02
 Excentricidade orbital0.0068
 Inclinação do eixo (graus)177.36
 Inclinação orbital (graus)3.394
 Gravidade equatorial na superfície (m/seg^2)8.87
 Velocidade de escape no equador(km/seg)10.36
 Albedo geométrico visual0.65
 Magnitude (Vo)-4.4
 Temperatura média na superfície482°C
 Pressão Atmosférica (bars)92
 Composição atmosférica







Dióxido de Carbono
Nitrogénio
    Vestígios de : Dióxido de enxofre, vapor de água, monóxido de carbono, árgon, hélio, neón, cloreto de hidrogénio e fluoreto de hidrogénio.

96%
3+%













Imagem de Vénus pela Mariner 10


Esta bonita imagem de Vénus é um mosaico de três imagens tiradas pela Mariner 10 em 5 de Fevereiro de 1974. Mostra-nos a espessa cobertura de nuvens que impede a observação óptica da superfície de Vénus. Somente através do mapeamento por radar é que a superfície se revela. (Copyright Calvin J. Hamilton)




Imagem de Vénus pela Galileo


Em 10 de Fevereiro de 1990 a sonda Galileo obteve esta imagem de Vénus. Apenas se observa a sua camada de nuvens. (Copyright Calvin J. Hamilton)




Imagem de Vénus pelo Hubble

Esta é uma imagem de Vénus em luz ultravioleta tirada pelo Telescópio Espacial Hubble a 24 de Janeiro de 1995, quando Vénus estava a uma distância de 113,6 milhões de quilómetros da Terra. Em comprimentos de onda ultravioleta as formações de nuvens tornam-se distintas. Em especial, uma formação em "Y" horizontal vista próximo do equador. As regiões polares são mais brilhantes, possivelmente mostrando uma neblina de pequenas partículas sobrepondo-se às nuvens. As regiões escuras mostram a localização de dióxido de enxofre aumentado junto ao tecto de nuvens. De missões anteriores, os astrónomos sabem que tais formações viajam de Este para Oeste com os ventos predominantes de Vénus, dando uma volta completa ao planeta em quatro dias. (Crédito: L. Esposito, University of Colorado, Boulder, and NASA)


Vénus 

Esta é uma vista global da superfície de Vénus, centrada a 180 graus longitude Este. A cor simulada serve para evidenciar estruturas de pequena escala. (Cortesia NASA/JPL)


Cinco Vistas globais 

A superfície de Vénus é apresentada em cinco vistas globais. A imagem ao centro (A) está centrada sobre o pólo norte de Vénus. As restantes estão centradas sobre o equador de Vénus a (B) 0 graus longitude, (C) a 90 graus Este, (D) a 180 graus e (E) a 270 graus. A região brilhante perto do centro da vista polar é Maxwell Montes, a mais alta cadeia de montanhas de Vénus. Ovda Regio aparece centrada na vista (C) 90 graus Este. Atla Regio é proeminentemente observada na vista (D) 180 graus. (Cortesia NASA/JPL)


Vista Hemisférica de Vénus 

A vista hemisférica de Vénus, revelada por mais de uma década de investigações radar que culminaram com a missão Magalhães em 1990-1994, está centrada a 0 graus Este de longitude. A resolução real desta imagem é de 3 quilómetros. Foi processada para melhorar o contraste e dar ênfase a pequenas formações, e codificada por cor para representar as elevações. (Cortesia NASA/USGS)


Vistas Hemisféricas Adicionais de Vénus



Mapa Venusiano 

Esta imagem é uma projecção Mercator da topografia Venusiana. Foram atribuídos nomes a muitas das diferentes regiões. O mapa estende-se de -66,5 a 66,5 graus em latitude e começa a 240 graus longitude. (Copyright Calvin J. Hamilton)


Mapa Topográfico Venusiano 

Este é outra projecção de Mercator da topografia Venusiana. O mapa estende-se de -66,5 a 66,5 graus em latitude e começa a 240 graus longitude. A versão a Preto & Brancodesta imagem também está disponível. (Cortesia A.Tayfun Oner)


Topografia Venusiana 

Esta imagem é uma projecção de Mercator da topografia Venusiana das regiões montanhosas, tais como Ishtar Terra, Aphrodite Terra, Alpha Region e Beta Regio, mostradas em amarelo e laranja. As regiões baixas estão representadas em azul. (Courtesy NASA/JPL)


Mapa Cilíndrico de Vénus 

Vénus é mostrado neste simples mapa cilíndrico da superfície. Os limites esquerdo e direito da imagem estão a 240 graus Este longitude. O topo e fundo da imagem estão a 90 graus Norte latitude e 90 graus Sul latitude, respectivamente. A região brilhante no topo esquerdo ao centro é Maxwell Montes, a mais alta cadeia montanhosa de Vénus. Aphrodite Terra, grande região de terras altas, estende-se do equador ao centro direita. Os sinais escuros espalhados na imagem são halos que rodeiam crateras mais recentes. A globalidade destes dados revelam um número de crateras consistente com a idade média da superfície de Vénus de 300 milhões a 500 milhões de anos. (Cortesia NASA/JPL)


Gula Mons e Cratera Cunitz 

Uma parte de Eistla Regio Ocidental é mostrada nesta imagem tridimensional, em perspectiva, da superfície de Vénus. O ponto de vista está situado a 1.310 quilómetros a sudoeste de Gula Mons numa elevação de 0,78 quilómetros. O ponto de vista aponta para Noroeste, com Gula Mons aparecendo no horizonte. Gula Mons, um vulcão com 3 quilómetros de altura, está localizado aproximadamente a 22 graus Norte de latitude, 359 graus Este de longitude. A cratera de impacto Cunitz, nome da astrónoma e matemática Maria Cunitz, é visível no centro da imagem. A cratera tem 48,5 quilómetros de diâmetro e está a 215 quilómetros do ponto de vista do observador. (Cortesia NASA/JPL)


Eistla Regio - Vale em Fenda 

Uma parte de Eistla Regio Ocidental é mostrada nesta imagem tridimensional, em prespectiva, da superfície de Vénus. O ponto de vista está localizado a 725 quilómetros a Sudeste de Gula Mons. Um Vale em Fenda, em primeiro plano, estende-se até à base de Gula Mons, um vulcão com 3 quilómetros de altura. Esta vista está de frente para Noroeste, com Gula Mons aparecendo à direita no horizonte. Sif Mons, um vulcão com 300 quilómetros de diâmetro, e com 2 quilómetros de altura, aparece à esquerda de Gula Mons, ao fundo.(Cortesia NASA/JPL)


Eistla Regio 

Uma parte de Eistla Regio é mostrada nesta imagem tridimencional, em prespectiva, da superfície de Vénus. O ponto de vista está localizado a 1.100 quilómetros a Noroeste de Gula Mons, numa elevação de 7,5 quilómetros. Correntes de lava estendem-se por centenas de quilómetros pelas planícies fracturadas, em primeiro plano, até à base de Gula Mons. Esta imagem mostra o Sudoeste com Gula Mons aparecendo à esquerda, logo abaixo da linha de horizonte. Sif Mons aparece à direita de Gula Mons. A distância entre Sif Mons e Gula Mons é de, aproximadamente, 730 quilómetros. (Cortesia NASA/JPL)


Planalto Lakshmi 

As escarpas sul e enseadas Ocidentais de Ishtar Terra são mostradas nesta imagem tridimensional, em prespectiva. Ishtar Terra Ocidental é, aproximadamente, do tamanho da Austrália, e é um dos maiores focos de investigações da Magalhães. A região montanhosa está situada entre 2,5 e 4 quilómetros de altitude, no centro de um planalto chamadoPlanalto Lakshmi que pode ser visto à distância, à direita. Aqui, a superfície do planalto cai precipitadamente para as planícies limítrofes, com declives cuja inclinação excede os 5% em 50 quilómetros. (Cortesia NASA/JPL)


Imagem Tridimensional, em Prespectiva, de Alpha Regio 

Uma parte de Alpha Regio é mostrada nesta imagem tridimensional, em prespectiva, da superfície de Vénus. Alpha Regio, elevação topográfica com aproximadamente 1.300 quilómetros de extensão, está centrada a 25 graus de latitude Sul, 4 graus de longitude Este. Em 1963, Alpha Regio foi a primeira região a ser identificada por radar da Terra. As zonas brilhantes da imagem de Alpha Regio são caracterizadas por múltiplos conjuntos de intersecções compostas de sulcos, gargantas, que originam formas poligonais. Mesmo a Sul deste complexo terreno está uma grande formação ovoide chamada Eve. O ponto brilhante da imagem de radar, centralizada em Eve, marca a localização do primeiro meridiano de Vénus. (Cortesia NASA/JPL)


Arachnoids 

Arachnoids são uma das mais espantosas formações encontradas em Vénus. Elas são vistas, no radar, como planos escuros na imagem da Magalhães, num mosaico da região de Fortuna. Tal como o nome sugere, Arachnoids são formações ovais, com anéis concentricos e uma complexa rede de fracturas estendendo-se para fora. Os Arachnoids variam em tamanho de, aproximadamente, 50 a 230 quilómetros de diâmetro. Arachnoids são similares em forma, mas geralmente menores, que as Coronae (estruturas vulcânicas circulares cercadas por cordilheiras e sulcos, bem como linhas radiais). Uma teoria, no que diz respeito à sua origem, diz que elas são precursoras da formação Coronae. As linhas brilhantes, que o radar mostra, estendendo-se por muitos quilómetros, podem ter resultado da magma elevado do interior do planeta, e que empurrou a superfície para cima formando "fendas". Correntes de lava brilhantes, no radar, estão presentes na 1. e 3. imagens, e também indicam actividade vulcânica nesta área. Algumas das fracturas atravessam estas correntes, indicando que as correntes ocorreram antes das fracturas surgirem. Tal relação entre diferentes estruturas fornecem boas evidências para uma relativa datação dos eventos. (Cortesia NASA/JPL)


Linhas Paralelas 

São visíveis dois grupos de formações paralelas que se intersectam quase em ângulos rectos. A regularidade deste terreno fez com que os cientistas o alcunhassem de terreno papel gráfico. Os fracos delineados são espaçados em intervalos de 1 quilómetro e estendem-se além dos limites da imagem. Os mais brilhantes e mais dominantes delineados, são menos regulares e frequentemente parecem iniciar e terminar onde interceptam os delineados mais fracos. Ainda não é claro onde os dois conjuntos de delineados representam falhas ou fracturas porém, em áreas fora da imagem, os delineados brilhantes estão associados com crateras e outras formações vulcânicas. (Cortesia Calvin J. Hamilton)


Fotografias da Superfície pelas Venera 9 e 10 

As sondas Soviéticas Venera 9 e 10 foram lançadas a 8 e 14 de Junho de 1975, respectivamente, para fazer algo sem precedentes: pousar na superfície de Vénus e obter fotografias. A Venera 9 tocou a superfície de Vénus a 22 de Outubro de 1975 às 17.13 horas, a cerca de 32 graus Sul, 291 graus Este, com o Sol perto do zénite. Funcionou durante 53 minutos, permitindo a obtenção de uma única fotografia. A Venera 9 pousou num declive com uma inclinação de cerca de 30 graus em relação ao horizonte. A parte branca na base da imagem é parte da sonda. A distorção é provocada pelo sistema de imagem da Venera. Pedras angulares, de tamanhos com 30 a 40 centímetros, dominam a paisagem, muitas semi-enterradas no solo. O horizonte é visível nos cantos superiores, tanto à esquerda como à direita.


A Venera 10 (em baixo) tocou a superfície de Vénus a 25 de Outubro de 1975 às 17.17 horas, a cerca de 16 graus Norte, 291 graus Este. A sonda ficou com uma inclinação de 8 graus. Devolveu à Terra esta imagem durante os 65 minutos que operou na superfície. O Sol estava perto do zénite durante esse tempo, e a luz era semelhante a um dia de Verão na Terra. Os objectos na parte inferior da imagem são peças da sonda. A imagem mostra lajes de rocha, parcialmente cobertas por uma fina camada de material, não muito diferente a uma área vulcânica na Terra. A grande laje em fundo estende-se por mais de 2 metros.


Fotografias Coloridas da Superfície pela Venera 13 

A 1 de Março de 1982 a Venera 13 tocou na superfície de Vénus a 7,5 graus Sul, 303 graus Este, a Este de Phoebe Regio. Foi a primeira missão Venera a incluir uma câmara de televisão a cores. A Venera 13 resistiu na superfície por 2 horas e 7 minutos, tempo suficiente para obter 14 imagens. Esta imagem foi conseguida usando filtros de cor azul, verde e vermelho, com uma resolução de 4 a 5 minutos. Parte da sonda é visível na base da imagem. Estão visíveis lajes e solo. A verdadeira cor é difícil de avaliar, dado que a atmosfera de Vénus filtra a luz azul. A composição da superfície é semelhante ao basalto da Terra. No terreno ao fundo está a tampa da lente. Esta imagem é a metade esquerda da fotografia da Venera 13.

sábado, 5 de julho de 2014

Conteúdo - Mercúrio

Mercúrio teve o seu nome atribuído pelos romanos baseado no mensageiro dos deuses, de asas nos pés, porque parecia mover-se mais depressa do que qualquer outro planeta. É o planeta mais próximo do Sol, e o segundo mais pequeno do sistema solar. O seu diâmetro é 40% mais pequeno do que o da Terra e 40% maior do que o da Lua. É até mais pequeno do que Ganímedes, uma das luas de Júpiter e Titan uma lua de Saturno.
Se um explorador andasse pela superfície de Mercúrio, veria um mundo semelhante ao solo lunar. Os montes ondulados e cobertos de poeira foram erodidos pelo constante bombardeamento de meteoritos. Existem escarpas com vários quilómetros de altura e centenas de quilómetros do comprimento. A superfície está ponteada de crateras. O explorador notaria que o Sol parece duas vezes e meia maior do que na Terra; no entanto, o céu é sempre negro porque Mercúrio praticamente não tem atmosfera que seja suficiente para causar a dispersão da luz. Se o explorador olhasse fixamente para o espaço, veria duas estrelas brilhantes. Veria uma com tonalidade creme, Vénus, e a outra azul, a Terra.
Antes da Mariner 10, pouco era conhecido sobre Mercúrio por causa da dificuldade de o observar com os telescópios, da Terra. Na máxima distância, visto da Terra, está apenas a 28 graus do Sol. Por isso, só pode ser visto durante o dia ou imediatamente antes do nascer-do-Sol ou imediatamente depois do pôr-do-Sol. Quando observado ao amanhecer ou ao anoitecer, Mercúrio está tão baixo no horizonte, que a luz tem que passar através do equivalente a 10 vezes a camada da atmosfera terrestre que passaria se Mercúrio estivesse directamente por cima de nós.
Durante a década de 1880, Giovanni Schiaparelli criou um esquema onde mostrava algumas estruturas de Mercúrio. Ele concluiu que Mercúrio deveria estar "preso" ao Sol de modo a acompanhar o seu movimento, tal como a Lua está "presa" à Terra. Em 1962, radio-astrónomos estudaram as emissões rádio de Mercúrio e concluíram que o lado escuro é quente demais para estar preso, acompanhando o movimento. Era de esperar que fosse muito mais frio se estivesse sempre virado para o lado oposto ao Sol. Em 1965, Pettengill e Dyce calcularam o período de rotação de Mercúrio como sendo de 59 +- 5 dias baseado em observações de radar. Mais tarde, em 1971, Goldstein melhorou o cálculo do período de rotação para 58.65 +- 0.25 dias por meio de observações do radar. Após observações mais próximas obtidas pela Mariner 10, o período foi definido como sendo de 58.646 +- 0.005 dias.
Apesar de Mercúrio não estar preso ao Sol, o seu período de rotação está relacionado com o período orbital. Mercúrio roda uma vez e meia por cada órbita. Por causa desta relação de 3:2, um dia em Mercúrio (desde o nascer do Sol até ao nascer do Sol do dia seguinte) dura 176 dias terrestres, conforme se mostra no diagrama seguinte.





No passado distante de Mercúrio, o seu período de rotação deve ter sido menor. Os cientistas especularam que a rotação deve ter sido de cerca de 8 horas, mas ao longo de milhões de anos foi gradualmente retardando por influência do Sol. Um modelo deste processo mostra que este retardamento levaria 109 anos e deveria ter elevado a temperatura interior de 100 graus Kelvin.
Muitas das descobertas científicas sobre Mercúrio vêm da sonda espacial Mariner 10 que foi lançada em 3 de Novembro de 1973. Ela passou em 29 de Março de 1974 a uma distância de 705 quilómetros da superfície do planeta. Em 21 de Setembro de 1974 passou Mercúrio pela segunda vez e em 16 de Março de 1975 pela terceira vez. Durante estas visitas, foram obtidas mais de 2,700 fotografias, cobrindo 45% da superfície de Mercúrio. Até esta altura, os cientistas não suspeitavam que Mercúrio tinha um campo magnético. Eles pensavam que, por Mercúrio ser pequeno, o seu núcleo teria solidificado há muito tempo. A presença de um campo magnético indica que o planeta tem um núcleo de ferro que está pelo menos parcialmente fundido. Os campos magnéticos são gerados pela rotação de um núcleo condutivo fundido e este efeito é conhecido por efeito de dínamo.
A Mariner 10 mostrou que Mercúrio tem um campo magnético que é 1% mais forte que o da Terra. Este campo magnético está inclinado 7 graus em relação ao eixo de rotação de Mercúrio e produz umamagnetosfera à volta do planeta. A origem do campo magnético é desconhecida. Pode ser produzido pelo núcleo de ferro parcialmente líquido no interior do planeta. Outra origem do campo pode ser a magnetização remanescente das rochas férreas que foram magnetizadas quando o planeta tinha um campo magnético forte, durante a sua juventude. Quando o planeta arrefeceu e solidificou, a magnetização remanescente permaneceu.
Já antes da Mariner 10, sabia-se que Mercúrio tinha uma alta densidade. A sua densidade é de 5.44 g/cm3 que é comparável à densidade da Terra, de 5.52g/cm3. Num estado não comprimido a densidade de Mercúrio é 5.5 g/cm3 enquanto a da Terra é apenas 4.0 g/cm3. Esta alta densidade indica que o planeta é constituído por 60 a 70 por cento em peso de metal e 30 por cento em peso de silicatos. Isto dá um núcleo com um raio de 75% do raio do planeta e um volume do núcleo de 42% do volume do planeta.

Superfície de Mercúrio

As fotografias obtidas pela Mariner 10 mostram um mundo que parece a lua. Está crivado de crateras, contém bacias de anéis e muitas correntes de lava. As crateras variam em tamanho desde os 100 metros (a resolução de imagem mais pequena que se consegue obter pela Mariner 10) até 1,300 quilómetros e estão em vários estados de conservação. Algumas são recentes com arestas vivas e raios brilhantes. Outras estão altamente degradadas, com arestas que foram suavizadas pelo bombardeamento de meteoritos. A maior cratera em Mercúrio é a bacia Caloris Planitia. Uma bacia foi definida por Hartmann e Kuiper (1962) como uma "depressão circular larga com anéis concêntricos distintos e linhas radiais." Outros consideram cada cratera com mais de 200 quilómetros como uma bacia. A bacia Caloris tem 1,300 quilómetros de diâmetro, e provavelmente foi causada por um projéctil com uma dimensão de mais de 100 quilómetros. O impacto produziu uma elevação com anéis concêntricos com três quilómetros de altura e expeliu matéria pelo planeta até uma distância de 600 a 800 quilómetros. (Outro bom exemplo de uma bacia com anéis concêntricos é a região Valhalla em Callisto, uma lua deJúpiter.) As ondas sísmicas produzidas pelo impacto em Caloris concentraram-se no outro lado do planeta e provocaram uma zona de terreno caótico. Após o impacto, a cratera foi parcialmente cheia com lava.
Mercúrio está cheio de grandes penhascos ou escarpas que aparentemente se formaram quando Mercúrio arrefeceu e sofreu uma compressão de alguns quilómetros. Esta compressão produziu uma crusta enrugada com escarpas de quilómetros de altura e centenas de quilómetros de comprimento.
A maior parte da superfície de Mercúrio está coberta de planícies. Muitas delas são antigas e crivadas de crateras, mas algumas das planícies têm menos crateras. Os cientistas classificaram estas planícies como planícies intercrateras e planícies suaves. Planícies intercrateras estão menos saturadas de crateras que têm menos de 15 quilómetros de diâmetro. Estas planícies provavelmente foram formadas quando as correntes de lava cobriram os terrenos mais antigos. As planícies suaves são recentes com poucas crateras. Existem planícies suaves à volta da bacia Caloris. Em algumas áreas podem ser vistas pequenas porções de lava a preencher as crateras.
A história da formação de Mercúrio é semelhante à da Terra. Há cerca de 4.5 biliões de anos formaram-se os planetas. Esta foi uma época de bombardeamento intenso sobre os planetas, que eram atingidos pela matéria e fragmentos da nebulosa de que foram formados. Logo no início desta formação, Mercúrio provavelmente ficou com um núcleo metálico denso e uma crusta de silicatos. Depois do intenso período de bombardeamento, correntes de lava percorreram o planeta e cobriram a crusta mais antiga. Por esta altura, já muitos dos fragmentos tinham desaparecido e Mercúrio entrou num período de bombardeamento mais ligeiro. Durante este período foram formadas as planícies intercrateras. Então Mercúrio arrefeceu. O núcleo contraiu-se o que por sua vez quebrou a crusta e produziu as escarpas. Durante o terceiro estágio, a lava correu pelas regiões mais baixas, produzindo as áreas mais planas. Durante o quarto estágio, bombardeamentos de micrometeoritos criaram uma superfície de poeira que é conhecida por regolito. Alguns meteoritos pouco maiores atingiram a superfície e produziram as crateras de raios luminosos. Além de colisões ocasionais de meteoritos, a superfície de Mercúrio já não é activa e permanece no mesmo estado de há milhões de anos.

Pode existir água em Mercúrio?

Podíamos supor que em Mercúrio não pode existir água em nenhuma forma. Tem pouquíssima atmosfera e é extremamente quente durante o dia, mas em 1991 cientistas em Caltech captaram ondas de rádio vindas de Mercúrio e descobriram algumas invulgarmente brilhantes vindas do polo norte. O brilho aparente do polo norte poderia ser explicado por gelo na superfície ou logo abaixo. Mas é possível haver gelo em Mercúrio? Devido à rotação de Mercúrio ser quase perpendicular ao plano orbital, o polo norte vê sempre o sol um pouco acima do horizonte. O interior das crateras nunca está exposto ao Sol e os cientistas suspeitam que está a uma temperatura inferior a -161 C. Esta temperatura congelante pode ter água provinda de evaporação do interior do planeta, ou gelo trazido para o planeta resultante de impacto de cometas. Estes depósitos de gelo podem ter sido cobertos com uma camada de pó e por isso mostram ainda os reflexos brilhantes no radar.




Estatísticas de Mercúrio
 Massa (kg)3.303e+23
 Massa (Terra = 1)5.5271e-02
 Raio equatorial (km)2,439.7
 Raio equatorial (Terra = 1)3.8252e-01
 Densidade média (gm/cm^3)5.42
 Distância média ao Sol (km)57,910,000
 Distância média ao Sol (Terra = 1)0.3871
 Período de rotação (dias)58.6462
 Período orbital (dias)87.969
 Velocidade orbital média (km/seg)47.88
 Excentricidade orbital0.2056
 Inclinação do eixo (graus)0.00
 Inclinação orbital (graus)7.004
 Gravidade à superfície no equador(m/seg^2)2.78
 Velocidade de escape no equador (km/seg)4.25
 Albedo geométrico visual0.10
 Magnitude (Vo)-1.9
 Temperatura média à superfície179°C
 Temperatura máxima à superfície427°C
 Temperatura mínima à superfície-173°C
 Composição atmosférica







Hélio
Sódio
Oxigénio
Outros

42%
42%
15%
1%











Este mosaico de imagens de Mercúrio foi construído a partir de fotografias obtidas pela Mariner 10 seis horas antes da sonda passar pelo planeta em 29 de Março de 1974. Estas imagens foram obtidas de uma distância de 5,380,000 quilómetros (3,340,000 milhas). (Cortesia Calvin J. Hamilton, USGS, e NASA)



Mercúrio 


Este mosaico de duas imagens (FDS 26850, 26856) de Mercúrio foi construído de fotografias obtidas pela Mariner 10 poucas horas antes do primeiro e mais próximo encontro entre a sonda e o planeta em 29 de Março de 1974. (Copyright Calvin J. Hamilton)




Vista na Partida de Mercúrio 


Este mosaico de Mercúrio foi criado a partir de mais de 140 imagens obtidas pela sonda Mariner 10 enquanto passava pelo planeta mais interior em 29 de Março de 1974. A trajectória da Mariner 10 levou a sonda até ao hemisfério escuro de Mercúrio. As imagens foram obtidas depois da sonda sair da sombra de Mercúrio. (Cortesia Mark Robinson, Northwestern University)


Os Montes de Mercúrio 

"Terreno estranho" é o que descreve melhor esta região de elevações de Mercúrio. Esta área está no ponto antípoda da grande bacia Caloris. A onda de choque produzida pelo impacto de Caloris foi reflectida e concentrou-se no ponto antípoda, modificando a crusta e partindo-a numa série de blocos complexos. A área mostrada tem cerca de 100 quilómetros (62 milhas) de lado. (Copyright Calvin J. Hamilton; FDS 27370)


Sudoeste de Mercúrio 

Esta imagem mostra uma parte do quadrante sudoeste de Mercúrio obtida em 29 de Março de 1974, pela sonda espacial Mariner 10. A fotografia foi obtida quatro horas antes da maior aproximação quando a Mariner 10 estava a 198,000 quilómetros (123,000 milhas) do planeta. As maiores crateras vistas nesta figura têm cerca de 100 quilómetros (62 milhas) de diâmetro. (Copyright Calvin J. Hamilton; FDS 27216, 27217, 27224, 27225)


A Bacia Caloris Planitia 

Este mosaico mostra a bacia Caloris Planitia. Caloris é o termo latino que significa calor e a bacia teve este nome por estar próxima do ponto subsolar (o ponto mais próximo do sol) quando Mercúrio está no afélio. A bacia Caloris tem 1,300 quilómetros (800 milhas) de diâmetro e é o maior elemento conhecido de Mercúrio. Foi formada pelo impacto de um projéctil da dimensão de um asteróide. A superfície interior da bacia contém planos suaves mas é muito sulcada e fracturada. O cimo desta imagem é aproximadamente a norte.(Copyright Calvin J. Hamilton; FDS 188-199)


A Superfície Interior de Caloris 

Esta imagem é uma fotografia em alta resolução da bacia Caloris mostrada na imagem anterior. Mostra os sulcos e fracturas que aumentam em tamanho conforme estão mais próximas do centro da bacia (acima à esquerda). (Copyright Calvin J. Hamilton; FDS 126)


Crateras Brilhantes Raiadas 

Esta imagem mostra duas crateras proeminentes de Mercúrio (acima à direita) com auréolas brilhantes. As crateras têm cerca de 40 quilómetros (25 milhas) de diâmetro. As auréolas e raios cobrem outras estruturas da superfície, indicando que são das estruturas mais recentes em Mercúrio. (Copyright Calvin J. Hamilton; FDS 275)


Bacia de Anel Duplo 

Esta imagem mostra uma bacia de anel duplo que tem 200 quilómetros (120 milhas) de diâmetro. A superfície interior é plana e suave. O anel interior tem uma elevação inferior à do anel exterior. (Copyright Calvin J. Hamilton; FDS 27301)


Grandes Falhas em Mercúrio 

Esta imagem obtida pela Mariner 10 mostra Rupes Santa Maria, uma estrutura escura sinuosa que atravessa a cratera ao centro da imagem. Muitas destas estruturas foram descobertas nas imagens de Mercúrio da Mariner 10 e foram interpretadas como sendo enormes falhas tectónicas em que parte da crusta de Mercúrio foi empurrada por cima das partes adjacentes por forças de compressão. A abundância e comprimento destas falhas indicam que o raio de Mercúrio diminuiu 1-2 quilómetros (.6 - 1.2 milhas) após a solidificação e a formação das crateras de impacto. Esta alteração do volume provavelmente foi devida ao arrefecimento do planeta, após a formação de um núcleo metálico com três-quartos da dimensão do planeta. A imagem representa uma zona com 200 quilómetros (120 milhas) de lado e a zona superior é para norte. (© Copyright 1998 by Calvin J. Hamilton; FDS 27448)


Os Sulcos Antoniadi 

Esta imagem representa um sulco com 450 quilómetros (280 milhas) chamado Antoniadi. Está ao longo do lado direito da imagem, e atravessa quase a meio uma grande cratera com 80 quilómetros (50 milhas). Atravessa planícies suaves a norte e planícies intercrateras a sul [Strom et al., 1975]. (Copyright Calvin J. Hamilton)

sexta-feira, 4 de julho de 2014

Conteúdo - Estrelas



- Gigantescas bolas de gases quentes e incandescentes emitindo luz própria
Ex: Sol






- Agrupam-se em Constelações Ex: Ursa Menor, Ursa Maior, Cassiopeia …

quinta-feira, 3 de julho de 2014

Conteúdo - Cometas

- São constituídos por poeiras, gases solidificados e gelo
- São constituídos por três partes; Núcleo, Cabeleira e Cauda
- Ex. Cometa Halley

quarta-feira, 2 de julho de 2014

Conteúdo - Meteoritos

- São fragmentos de corpos sólidos naturais (asteróides, planetas, cometas ...), que vindos do espaço penetram a atmosfera terrestre, se incandescem pelo atrito com o ar e atingem a superfície terrestre


terça-feira, 1 de julho de 2014

Conteúdo - Caracteristicas dos diferentes planetas

A tabela seguinte lista informações estatísticas do Sol e dos planetas:

Distância
(UA)
Raio
(Terra)
Massa
(Terra)
Rotação
(Terra)
# LuasInclinação
Orbital
Excentricidade
Orbital
ObliquidadeDensidade
(g/cm3)
Sol0109332,80025-36*9---------1.410
Mercúrio0.390.380.0558.8070.20560.1°5.43
Vénus0.720.950.8924403.3940.0068177.4°5.25
Terra1.01.001.001.0010.0000.016723.45°5.52
Marte1.50.530.111.02921.8500.093425.19°3.95
Júpiter5.2113180.411161.3080.04833.12°1.33
Saturno9.59950.428182.4880.056026.73°0.69
Úrano19.24170.748150.7740.046197.86°1.29
Neptuno30.14170.80281.7740.009729.56°1.64
Plutão39.50.180.0020.267117.150.2482119.6°2.03

* O período de rotação do Sol à superfície varia de aproximadamente 25 dias no equador até 36 dias nos polos. No interior, abaixo da zona de convecção, parece rodar com um período de 27 dias.