Download 1 - Dropbox
Download 2 - Mega
Download 3 - Google Drive
Download 4 - Box
Bloco diagrama simplificado mostrando a colisão entre duas placas continentais convergentes.
|
Mapa esquemático mostrando as macroplacas envolvidas na formação dos Himalaias e analisadas no texto.
|
Reconstrução paleogeográfica da Terra durante o Silúrico Superior, há cerca de 435 M.A.. Nesse tempo, a Índia fazia parte da Gondwana e era limitada ao Norte pelo Cimmerian Superterrane. A posição da actual região de Zanskar, nos Himalaias, é mostrada por uma estrela negra.
|
Reconstrução paleogeográfica da Terra durante o Cretácico, há cerca de 100 M.A.. O Cimmeridian Superterrane deve ter sido "acrescentado" à Mega Laurásia. A crosta oceânica ao Norte do Oceano Neotethys estará em subducção ao longo do arco vulcânico de Dras. Abriu-se o oceano de Shigatze, como consequência do rifte e consequente expansão do fundo oceânico. A Índia deverá ter estado separada de África e E. Gondwana. Abriu-se o Oceano Índico. A posição da actual região de Zanskar, nos Himalaias, é mostrada por uma estrela negra.
|
Há quatro tipos de limites de placa:
· Limites divergentes -- onde a nova crusta é gerada, enquanto as placas são "empurradas" afastando-se.
· Limites convergentes -- onde a crusta é destruída, enquanto uma placa "mergulha" sob outra.
· Limites transformantes -- onde a crusta nem está a ser produzida nem a ser destruída, enquanto as placas deslizam horizontalmente uma em relação à outra.
· Zonas dos limites entre placas -- as largas bandas em que os limites entre placas não estão bem definidos, e os efeitos da interacção das placas não são claros.
|
Modelo esquemático da representação dos limites das placas, bem como dos principais aspectos determinantes da tectónica das placas. É notável a ligação entre a actividade vulcânica e as placas oceânicas e continentais, particularmente nos limites das placas. Deste modo, podemos falar em vulcanismo de subducção resultante do choque de placas oceânicas, originando, por exemplo, os arcos insulares activos, e do choque de uma placa oceânica com uma placa continental, originando a formação de cadeias montanhosas costeiras com actividade vulcânica (limites convergentes); vulcanismo no interior das placas oceânicas, o vulcanismo associado aos pontos quentes, o qual resulta da ascensão de plumas de material sobreaquecido nos níveis mais profundos do manto; vulcanismo de crista oceânica em expansão, originando a libertação do magma com formação de nova crusta oceânica (limites divergentes); no interior das placas continentais, a formação de riftes continentais precursores de cristas médio-oceânicas explica a existência de vulcanismo em locais afastados do limite das placas.
|
Modelo animado de placas de limites convergentes, mostrando o movimento relativo das placas.
|
Modelo animado de placas de limites transformantes, mostrando o movimento relativo das placas.
|
Em princípio os interiores das placas são geologicamente calmos. Existem, contudo, algumas excepções. Por exemplo, uma observação a um mapa do oceano Pacífico revela muitas ilhas na placa pacífica, afastadas dos seus limites. Todas elas são ou foram vulcões, isto é, tiveram origem no vulcanismo do fundo do mar. As ilhas do Havai são um exemplo tipico, formando um arquipélago alinhado. A datação de lavas da cadeia havaiana (e outras) mostrou que as suas idades aumentam à medida que nos afastamos do vulcão actualmente activo. |
Esquema mostrando uma secção (a) e um plano (b) de parte da placa pacífica, na região da cadeia havaiana. Observa-se o ponto quente estático dando origem a novas ilhas (Hawai-vulcanismo activo). As ilhas mais velhas, vulcanismo extinto (inactivo), foram arrastadas pela placa pacífica, na direcção Noroeste, sendo a mais velha a ilha de Kauai.
|
Bloco diagrama mostrando o mecanismo de formação da cadeia havaiana, constituída por ilhas vulcânicas assentes na placa pacífica e longe dos limites desta.
|
A maior parte dos vulcões que surgem no interior das placas, serão criados por pontos de erupção, fontes fixas de material vulcânico (magma) que se erguem das profundezas do manto. À sua expressão actual, como no Havai, chamamos pontos quentes. A maior parte dos grandes vulcões activos no interior das placas apresenta um rasto de vulcões extintos cada vez mais velhos que assinala opercurso da placa litosférica sobre o ponto de erupção. Os pontos quentes parecem ter origem a grande profundidade, talvez até nos limites entre o núcleo e o manto; muitos deles estão activos há muito tempo. Os vulcões mais antigos originados pelo ponto havaiano têm idades próximas dos 80 milhões de anos. |
William Smith (1769-1839) e os paleontólogos franceses Georges Cuvier (1769-1832) e Alexandre Brongniart descobriram que as rochas da mesma idade podem conter os mesmos fósseis, mesmo quando as rochas estão separadas por longas distâncias terrestres. Publicaram os primeiros mapas geológicos de extensas áreas, nas quais as rochas que continham fósseis similares foram consideradas da mesma idade relativa. Pelas observações cuidadosas das rochas e dos seus fósseis, aqueles homens e outros geólogos podiam reconhecer as rochas da mesma idade (Ver Tempo Geológico) em locais bastante afastados da Inglaterra. O princípio da correlação estratigráfica ou da identidade paleontológica, estabelecido por William Smith, no fim do século XVIII, determina que os estratos ou conjuntos de estratos caracterizados pelas mesmas associações de fósseis são da mesma idade.
Smith e outros cientistas da época sabiam que a sucessão das diferentes formas da vida preservadas como fósseis seriam úteis para compreender como e quando as rochas se formaram. Mais tarde, cientistas desenvolveram uma teoria para explicar essa sucessão.
|
Os conceitos que passamos a apresentar são importantes no estudo e no uso dos fósseis: 1) os fósseis representam os restos (sobretudo os esqueletos, as carapaças e outras estruturas duras) ou vestígios de seres vivos que ficaram preservados em rochas cuja génese foi contemporânea da existência desses seres, 2) a maioria dos fósseis são restos ou vestígios de seres vivos extintos; isto é, pertencem às espécies que tiveram grande expansão na Terra, mas tiveram um período de vida curto em termos de tempo geológico, 3) os diferentes tipos de fósseis encontrados nas rochas de diferentes idades são a prova que a vida na terra mudou ao longo do tempo geológico.
Se nós começarmos no presente e examinarmos camadas de rochas sedimentares cada vez mais velhas, atingiremos um nível onde nenhum fóssil dos antepassados dos seres humanos está presente. Se continuarmos a examinar camadas ainda mais antigas, chegaremos sucessivamente aos níveis onde nenhum fóssil de plantas com flôr estará presente. Prosseguindo com esta metodologia atingiremos os níveis em que nenhuns pássaros, nenhuns mamíferos, nenhuns répteis, nenhuns vertebrados, nenhumas plantas, nenhuns peixes, nenhunas conchas, até que chegamos ao nível em que nenhum ser vivo fóssil estará presente.
Os três conceitos atrás enunciados são sumariados no princípio geral chamado a lei da sucessão fóssil.
|
Amostra de mármore.
|
Os efeitos dos tremores de terra, da maneira como se manifestam aos
sentidos do homem, têm sido classificados por ordem de importância. As primeiras tentativas para a avaliação da intensidade dos sismos foram feitas no século XVII, decorrentes da necessidade de avaliar os abalos sísmicos no Sul de Itália. A escala era rudimentar. Os sismos eram classificados em ligeiros, moderados, fortes e muito fortes. Mais tarde desenvolveram-se escalas mais pormenorizadas com 12 graus, como a Escala Modificada de Intensidades de Mercalli, constituída por 12 graus de intensidades estabelecidos de acordo com um questionário-padrão, segundo a intensidade crescente do sismo.
|
| Designação |
Efeitos
|
I
|
Imperceptível
| Não é sentido pelas pessoas. Pássaros e outros animais podem manifestar uma certa inquietude. Apenas registado pelos sismógrafos. |
II
|
Fraco
| Sentido apenas por algumas pessoas em repouso, particularmente as que se encontram em andares superiores dos edifícios. Objectos suspensos oscilam. |
III
|
Ligeiro
| Sentido apenas pelas pessoas que se encontram em casa, assemelhando-se a uma vibração provocada pela passagem de um veículo pesado a grande velocidade. |
IV
|
Moderado
| Abalo perceptível pela maioria das pessoas, quer ao nível do solo quer nos edifícios. Vibração de portas e janelas, loiças nos armários e ranger do soalho. Ligeiras oscilações de alguns automóveis parados. |
V
|
Ligeiramente forte
| Sentido por toda a população. Os objectos suspensos oscilam; móveis podem deslocar-se; nas paredes e tectos, podem surgir pequenas fendas; estuques e cal podem cair das paredes e tectos; paragem dos pêndulos dos relógios. |
VI
|
Forte
| Sismo sentido por todas as pessoas, que entram em pânico saindo precipitadamente para a rua; os sinos das igrejas tocam espontaneamente. |
VII
|
Muito forte
| As pessoas têm dificuldade em permanecer em pé durante o abalo principal. Nas construções surgem fendas. Alterações nas nascentes. Produzem-se ondas na superfície dos tanques com água e as águas turvam-se. Sentido nos automóveis em movimento. |
VIII
|
Destruidor
| Pânico na população. As construções sólidas e com boas fundações sofrem alguns danos, os outros sofrem danos acentuados com desabamentos. Caem chaminés de fabricas. Dão-se derrocadas de terrenos. Surgem fendas no solo. A condução dos veículos pesados é perturbada. Variação do nível da água nos poços. |
IX
|
Ruinoso
| Desmoronamento de alguns edifícios. Há danos consideráveis em construções muito sólidas. Rotura de canalizações subterrâneas. Queda de pontes. Deformação das linhas férreas. Largas fendas no solo. |
X
|
Desastroso
| Destruição da maior parte dos edifícios. Forte movimentação de terrenos. Desmoronamento de estradas e barragens. Transbordamento de água em canais, lagos e rios. |
XI
|
Muito desastroso
| Destruição da quase totalidade dos edifícios, mesmo os mais sólidos. Caem pontes, diques e barragens. Destruição da rede de canalizações e das vias de comunicação. Formam-se grandes fendas no terreno, acompanhadas de desligamentos. Há grandes escorregamentos de terrenos. |
XII
|
Catastrófico
| Destruição total da área afectada. Profundas alterações nas montanhas, vales, cursos de água, enfim de toda a topografia. |
O recurso à utilização das intensidades tem a vantagem de não necessitar de medições realizadas com instrumentos, baseando-se apenas na descrição dos efeitos produzidos. Tem ainda a vantagem de se aplicar quer aos sismos actuais, quer também aos sismos ocorridos no passado (sismicidade histórica). Contudo, tem vários inconvenientes importantes, sendo, talvez, o mais importante aquele que resulta da sua subjectividade. Face a esta limitação, era natural que se procurasse criar uma nova grandeza que fosse independente do factor subjectividade. Esta nova grandeza é a magnitude. A magnitude está relacionada com a quantidade de energia libertada durante um sismo. Em 1931, Wadati, cientista japonês concebeu uma escala para esta grandeza, que foi posteriormente aperfeiçoada nos Estados Unidos por Richter, pelo que ficou conhecida pela designação de escala de Richter. O modo como se pretende determinar a energia libertada pelo sismo assenta na medição da amplitude máxima das ondas registadas nos sismogramas. Foram definidos nove graus para a escala de Richter. O valor da magnitude correspondente a cada grau, é dez vezes superior ao valor anterior. Assim, por exemplo, a diferença entre a quantidade de energia libertada mum sismo de magnitude 4 e um outro de magnitude 7, é de 30X30X30=27.000 vezes. Um determinado sismo possui apenas uma só magnitude, mas é sentido com intensidade diferente conforme a distância do local ao epicentro. |
Cadeia Montanhosa Alpina |
O mosaico de fotografias espaciais, abaixo representado, esplêndido na cor quase natural, proporciona uma visão sumária dos Alpes europeus e das cadeias montanhosas relacionadas. Este mosaico fornece material para as discussões mais detalhadas da tectónica dos Alpes e do seu desenvolvimento geomorfológico. |
Os Alpes fazem parte de uma extensa cadeia montanhosa que se estende pelo Sul da Europa, Ásia Menor(Turquia), India, Rússia, e Norte da China. Podemos considerar os Apeninos (Itália), a cordilheira Dinárica/Pindárica (Ex-Jugoslávia e Grécia) e os Cárpatos (Roménia e Ucrânia) como "ramos" da Cadeia Alpina. Uma série de eventos orogénicos que começaram no Mesozóico (VerTabela Cronoestratigráfica, no TEMA Tempo Geológico) e culminaram no Cenozóico, com os sedimentos cenozóicos acumulados no Mar de Tétis e deformados para geraram o sistema Alpino/Himalaiano. A grande deformação (orogenia) está, directamente, relacionada com as colisões dos Limites Convergentes de Placas Tectónicas do tipo continente/continente. Para os Alpes, esta colisão resultou do movimento, para Norte, da Placa Africana de encontro à Placa Eurasiática, fechando parcialmente o Mar de Tétis. Grande parte dos Alpes é formada, actualmente, por grandes dobras, dos mais diversos tipos, e falhas implantadas em rochas sedimentares. São características as dobras chamadas "nappes", em que os sedimentos foram carreados para cima de massas rochosas mais velhas. O transporte tectónico envolveu, em simultâneo, grandes forças de compressão associadas à força de gravidade. Os tipos de dobramentos variam desde as dobras abertas de "descolamento" do tipo-Jura, às dobras fechadas e deitadas altamente deformadas. A orogenia começou no início do Mesozóico (Ver Tabela Cronoestratigráfica, no TEMA Tempo Geológico) e culminou noMiocénico. O actual aspecto "em agulhas" dos cumes dos Alpes é o resultado do levantamento que prossegue actualmente, associado à erosão provocada pelas quatro glaciações do Período Quaternário. Façamos uma síntese dos eventos tectónicos que contribuíram para a formação dos Alpes. A América do Norte começou a separar-se da Pangea há aproximadamente 180 Milhões de Anos (M.A.), ao mesmo tempo que se separavam as placas Eurasiática e Africana. Uma série de pequenas placas (microplacas) formaram-se na zona do rift (Ver Tectónica de Placas); estas tendem a mover-se individualmente em diferentes sentidos e com diferentes velocidades. Cadeias montanhosas, espalhadas pelas zonas de subducção, e falhas transformantes, limitaram as microplacas. O colapso destas características quando a Placa Africana colide com a Eurasiática produziu os complexos padrões tectónicos (grandes dobras, carreamentos, falhamentos...) que marcam e definem a região alpina. A Península Ibérica terá resultado da separação das placas Americana e Eurasiática (há cerca de 100 a 400 M.A.). Durante o Cretácico, a Peninsula Ibérica situava-se ao longo da zona de falha Betic e dos actuais Pirinéus. O vulcanismo e as principais deformações começaram no final do Terciário; nesta data a microplaca de Carnics começou a colidir e a mergulhar para baixo da Europa do Sul, originando novos levantamentos e complexos dobramentos nas rochas. Durante o Miocénico, a microplaca Turca-Afegã moveu-se para Oeste ao longo da zona de falha da Anatólia. As microplacas de Apulian e de Rhodope uniram-se à microplaca de Carnics; houve grandes deformações no sentido Norte-Sul da Europa, enquanto um sistema de arco insular migrou (Península Italiana actual) para Este no final do Miocénico; formaram-se os Mares Tirreno e Adriático. A Grécia separou-se da Turquia (há cerca de 6 a 8 M.A.), originando o Mar Egeu. |
A energia calorífica libertada pela câmara magmática, origina a libertação de materiais líquidos e gasosos existentes nas rochas encaixantes. A esta actividade chama-se vulcanismo residual ou secundário. Os fenómenos de vulcanismo secundário mais comuns são os seguintes: 1) géiseres, são jactos intermitentes e periódicos de água e vapor de água, a elevada temperatura, 2) fontes ounascentes termais, são emanações de água, vapor de água e dióxido de carbono a elevada temperatura (cerca de 50 C); quando o calor libertado pelo magma em ascensão encontra aquíferos (acumulação de águas em profundidade), transforma as águas em águas termais ou juvenis; estas contêm sais minerais em diferentes proporções o que possibilita o seu uso para fins terapêuticos, 3)fumarolas, são emanações gasosas (vários compostos gasosos) exaladas através de fissuras em zonas próximas de vulcões activos; as fumarolas, com predomínio de gases sulfurados (dióxido e trióxido de enxofre, ácido sulfídrico) denominam-se sulfataras e podem produzir importantes depósitos de enxofre; quando, para além do vapor de água, existe libertação quase exclusiva de dióxido de carbono, as fumarolas designam-se por mofetas. |
Géisere na Islândia. | Fumarola na Islândia. | Sulfatara na Islândia. |
Na primeira página deste Tema, fizemos uma breve referência à estrutura vulcânica que forma um vulcão, enquanto que na segunda página fizemos uma alusão ao magma. Chegou o momento de dizermos, de forma muito sumária, porque é que surgem os vulcões.
Os vulcões ocorrem porque, como sabemos a crosta da Terra está dividida num mosaico de placas rígidas - placas tectónicas - que se assemelham a um "puzzle" . Há 16 macroplacas. Já sabemos que estas placas rígidas flutuam sobre uma camada menos rígida (plástica) e superficial do manto superior a astenosfera. As placas movem-se separando-se,placas divergentes, ou colidindo umas com as outras, placas convergentes. A maioria dos vulcões ocorrem próximo dos limites das placas tectónicas. Quando as placas colidem, uma placa desliza para baixo da outra. Esta é uma zona de subducção. Quando a placa que mergulha atinge o manto, as rochas que a constituem derretem e originam o magma que pode mover-se para cima e causar uma erupção na superfície da terra, resultando um vulcão. Em zonas do "rift" (cristas ou dorsais), as placas divergem (afastam-se) uma da outra e o magma ascende à superfície e causa uma erupção vulcânica. Alguns vulcões ocorrem no meio das placas nas áreas chamadas "hotspots" (pontos quentes) - lugares onde o magma se forma, no interior da placa, e depois ascende à superfície terrestre originando um vulcão.
|
Modelo esquemático representativo da origem e ocorrência dos vulcões à superfície da Terra. |
Mapa-mundi simplificado mostrando a distibuição dos "Pontos Quentes" e os Limites entre Placas Tectónicas. |