A partir dos dados obtidos de vários sismogramas, é possível traçar-se um gráfico, como o representado acima, que relaciona o tempo gasto pelas ondas sísmicas com a distância epicentral. A velocidade das ondas P e S aumenta com a distância ao epicentro e a velocidade da onda L mantêm-se constante. A velocidade média das ondas sísmicas não é constante. Para o caso considerado, aumenta com a profundidade (quanto maior é a distância epicentral, maior é a profundidade atingida pelas ondas sísmicas), o que significa que o meio de propagação, isto é, o interior da Terra não é homogéneo sob o ponto de vista das grandezas que influenciam a sua propagação.
|
Os raios sísmicos, tal como os raios luminosos, sofremreflexão e refracção ao passarem de um meio para outro de características físicas diferentes. Para ângulos de incidência superiores ao valor do ângulo crítico, o raio sísmico só se reflecte. Para valores inferiores ao valor do ângulo crítico, o raio sísmico refracta-se e reflecte-se.
Em sismologia, à superfície de separação entre dois meios com propriedades físicas diferentes chama-sedescontinuidade.
As trajectórias das ondas P e S são curvilíneas. Como a Terra é heterogénea, admite-se que as ondas sísmicas atravessem meios com propriedades físicas diferentes.
|
Esquema representando uma onda sísmica directa, reflectida e refractada.
Logo que um raio sísmico toca uma superfície, separando dois meios de propagação diferentes (superfícies de descontinuidade), reflecte-se e/ou refracta-se de modo que as suas trajectórias permitem, aos sismólogos, conhecer as características dos meios atravessados.
|
Esquema representando possíveis comportamentos de uma onda P, numa superfície de descontinuidade, entre dois meios sólidos.
São precisamente estes fenómenos de reflexão e de refracção que explicam o facto de as ondas atingirem a superfície terrestre de modo desigual, originando para cada sismo umazona de sombra, isto é, uma zona onde não se propagam ondas P e S directas e, consequentemente, não se manifesta actividade sísmica.
|
Esquema do trajecto das ondas sísmicas nas zonas mais superficiais da Terra.
As estações sismográficas A, B e C, representadas no esquema, encontram-se a diferentes distâncias do epicentro de um mesmo sismo. Naturalmente é de esperar que as ondas cheguem primeiro à estação A, a mais próxima do epicentro, depois à estação B e, só depois, à estação C, que se encontra mais afastada. Em regra é assim que sucede. No entanto, nalguns casos, as ondas chegam primeiro à estação C. Tal só pode ser justificado admitindo que, ao atingirem determinada profundidade (na passagem do meio I para o meio II), a velocidade das ondas aumenta abruptamente, a ponto de percorrer em menos tempo um espaço maior.
Em 1909, em Zagreb na Jugoslávia, André Mohorovicic, notável geofísico, depois de complicados cálculos matemáticos chegou à conclusão que uma descontinuidade separa a crosta terrestre do que se encontra por baixo; este limite, denominado em sua honra descontinuidade de Mohorovicic, descontinuidade de Moho ou descontinuidade M, situa-se a uma profundidade média de 40 quilómetros. À zona situada abaixo dessa descontinuidade chamou-se manto. A descoberta de Mohorovicic permitiu seleccionar dados com interesse para o conhecimento da estrutura da Terra.
É de salientar que a profundidade da crosta (crusta) não é constante, variando entre os 5 e os 10 Km de espessura sob os oceanos, e entre os 20 e os 70 Km sob os continentes, sendo os valores mais elevados atingidos nas grandes cadeias montanhosas continentais.
A diferença de velocidade de propagação das ondas P nos oceanos (7 Km/s) e nos continentes (6 Km/s) permite considerar a crusta (crosta) subdividida em dois tipos: crusta continental e crusta oceânica. Esta variação da velocidade das ondas P ao longo da crusta deve-se à variação da sua composição - a crusta continental é constituída, essencialmente por rochas graníticas (d=2,7), enquanto que a oceânica é constituída, principalmente, por rochas basálticas mais densas (d=2,9).
|
Esquema mostrando as zonas de sombra assinaladas pelo comportamento das S e P à profundidade de 2900 Km (limite da zona representada a amarelo) e 5.150 Km (limite da zona representada a branco), bem como os diferentes estados físicos das sucessivas camadas concêntricas da Terra, deduzidos a partir das velocidades de propagação das ondas sísmicas.
Em 1906, o irlandês Oldham verificou que as ondas P registadas no pólo oposto ao epicentro de um sismo se encontravam atrasadas em comparação com as registadas nas proximidades do epicentro, propagando-se a 4,5 Km/s em vez dos 6,5 Km/s habitualmente observáveis. Oldham concluiu que "as ondas, penetrando a grande profundidade, atravessam um núcleo central composto por uma matéria diferente, que as transmite com menor velocidade". E, assim, admitiu-se pela primeira vez a existência de um núcleo, contudo, de dimensão desconhecida. Sete anos mais tarde, o alemão Beno Gutenberg consegue determinar a sua dimensão, depois de observar que, para cada sismo, existe um sector da superfície terrestre onde é impossível registar ondas sísmicas directas, isto é, ondas sísmicas que atingem a superfície terrestre sem sofrerem desvios na sua trajectória, que, no interior da Terra, é geralmente curvilínea. A esta faixa dá-se o nome de zona de sombra e a mesma situa-se a uma distância angular do epicentro compreendida entre os 105o e os 142o(103o e 143o); fazendo a conversão da distância angular em distância quilométrica, sobre a superfície terrestre, a zona de sombra de um sismo situa-se entre os 11.500 e os 14.000 Km de distância do epicentro. As estações sismográficas localizadas até 105o registavam a chegada das ondas P e Snos horários previstos; as estações situadas para além dos 142o do epicentro do sismo não registavam a chegada das ondas S (S sombra), e as ondas P (K) eram registadas com atraso em relação ao tempo previsto.
Gutenberg demonstrou que esta zona de sombra se deve a uma descontinuidade. A análise comparada de séries de sismogramas de diferentes estações sismográficas permitiu a Gutenberg calcular a profundidade desta descontinuidade - 2.900 Km. Por este facto, a esta fronteira que assinala o início do núcleo, dá-se o nome de descontinuidade de Gutenberg (no esquema acima representado corresponde ao limite da zona amarela).
|
quarta-feira, 9 de junho de 2010
Conteúdo - Estrutura da Terra 3
Subscrever:
Enviar feedback (Atom)
Sem comentários:
Enviar um comentário