Páginas

sábado, 14 de outubro de 2023

Movimento da seiva floémica nas plantas vasculares

As plantas vasculares possuem um sistema duplo de tecidos condutores: xilema e floema. A translocação da seiva elaborada ou floémica (água e compostos orgânicos – sacarose, hormonas, nucleótidos, aminoácidos e iões orgânicos) ocorre num sentido bidirecional (ascendente e descendente), ao longo do floema, para todas as células vivas da planta.

A hipótese do fluxo de massa, baseada nos trabalhos de Münch, explica o transporte de matéria orgânica no floema, desde os locais de produção até aos locais de consumo e armazenamento. A matéria orgânica transportada resulta do processo fotossintético ocorrido nas células do mesófilo das folhas. A translocação floémica tem como função remover os compostos orgânicos (normalmente a sacarose) produzidos nas folhas e transportá-los para o seu local de consumo ou para um local de reserva.

A glicose (monossacarídeo), produzida nas células do mesofilo foliar (tecido fotossintético da folha), é transformada em sacarose (dissacarídeo) que é transportada ativamente (por transporte ativo), contra o gradiente de concentração, com gasto de energia (ATP) para os tubos crivosos do floema, passando primeiro pelas células de companhia. A entrada de sacarose nos tubos crivosos provoca um aumento de pressão osmótica no seu interior, possibilitando a entrada de água proveniente do xilema (que se situa ao lado).

Face a esta entrada de água, ocorre o aumento da pressão de turgescência, forçando o deslocamento da seiva floémica para as células seguintes, atravessando as placas crivosas. A sacarose é transportada, deste modo, até aos órgãos de consumo. Com a saída da sacarose do floema para os órgãos de consumo, por transporte ativo, ocorre uma diminuição da pressão osmótica nos tubos crivosos, o que provoca a saída de água para as células vizinhas de xilema.

Embora esta hipótese seja, atualmente, a mais aceite para explicar o movimento da seiva elaborada no interior do floema, há ainda alguns pontos por resolver, nomeadamente o facto de não explicar a existência de fluxos simultâneos, ascendente e descendente, no mesmo tubo crivoso, nalgumas alturas do ano. Também não explica a baixa pressão no tubo crivoso quando comparada com a pressão necessária para a seiva floémica conseguir atrvessar as pequenas perfurações das placas crivosas.

Movimento da seiva xilémica nas plantas vasculares

As plantas vasculares possuem um sistema duplo de tecidos condutores: xilema e floema. A translocação da seiva bruta ou xilémica (água e sais minerais) ocorre sempre no sentido ascendente e de um modo passivo (sem gasto de energia), ao longo do xilema.

Existem duas hipóteses explicativas para o movimento ascensional da seiva bruta a partir da raiz, por ação de forças físicas: hipótese da pressão radicular e hipótese da tensão-coesão-adesão.

Nalgumas plantas, o movimento ascendente da seiva bruta no interior do xilema pode ser explicado pela existência de uma pressão positiva exercida, ao nível do xilema, nas raízes – pressão radicular. A acumulação de sais minerais na raiz é consequência da ocorrência de transporte ativo de iões desde o solo até ao interior da raiz, aumentando o gradiente de concentração entre os dois meios. A manutenção de um meio interno hipertónico relativamente ao exterior torna possível a entrada de água, por osmose, para o interior das células da raiz cujas moléculas sobem passivamente ao longo das células do xilema radicular.

Os fenómenos de exsudação e de gutação constituem evidências da existência de uma pressão radicular. O primeiro consiste na saída contínua de água (seiva bruta) através de um corte de caule perto da raiz e o segundo na libertação forçada de água, no estado líquido, por aberturas que existem nas margens das folhas – os hidátodos. Este último apenas se regista em algumas espécies e quando a humidade atmosférica é elevada e existe muita água no solo. Deste modo, a hipótese da pressão radicular não pode ser generalizada. Além de ser um modelo incapaz de explicar o transporte nas árvores de elevado porte, existem plantas que não apresentam sequer pressão ao nível das raízes (por exemplo as coníferas).

A hipótese da tensão-coesão-adesão é o modelo que permite uma maior generalização para explicar a subida da seiva bruta ao longo do xilema. Quando ocorre transpiração nas folhas, as células do mesófilo perdem vapor de água, estabelecendo-se, na parte superior da planta, um défice hídrico e uma tensão nas células – pressão negativa. Deste modo, regista-se um aumento da pressão osmótica nas células do mesófilo relativamente ao xilema das folhas provocando a passagem da água, por osmose, do xilema para o mesófilo. A tensão passa, agora, para o xilema. O aumento da pressão osmótica no xilema provoca o movimento de água por osmose do xilema caulinar para o xilema das folhas.

As moléculas de água tendem a ligar-se umas às outras por ligações de hidrogénio, mantendo-se uma coluna contínua de água no interior do xilema através de forças de coesão (capacidade que as moléculas de água têm de se manterem unidas entre si). Concomitantemente, as moléculas de água ligam-se a outras moléculas da parede do xilema (celulose e lenhina) através, também, de ligações de hidrogénio (adesão). A ascensão da água para o xilema caulinar cria um défice hídrico, potenciando a absorção ao nível da raiz e a entrada de água do solo para o interior da planta.

Aspetos estruturais e funcionais do xilema

As plantas vasculares possuem um sistema duplo de tecidos condutores: xilema e floema. A translocação da seiva bruta ou xilémica (água e sais minerais) ocorre sempre no sentido ascendente e de um modo passivo (sem gasto de energia), ao longo do xilema.

O xilema (ou lenho ou tecido traqueano) tem continuidade ao longo de toda a planta, assegurando o transporte de água e sais minerais, contra a gravidade, num sentido ascendente, desde as raízes até aos órgãos fotossintéticos.

O xilema é constituído, essencialmente, por células mortas. Nele, podemos encontrar quatro tipo de células: os elementos de vaso, os traqueídos ou tracoides, as fibras lenhosas e o parênquima lenhoso. A seiva bruta circula apenas ao nível dos elementos condutores que são os elementos de vaso e os traqueídos.

Os elementos de vaso são células que sofreram uma morte programada, perdendo todo o seu conteúdo celular. Não apresentam paredes transversais, formando, deste modo, um tubo oco constituído exclusivamente pelas paredes celulares, laterais, com espessamentos de lenhina (substância impermeável). Assim, a parede fica resistente e o espaço interior vazio, formando verdadeiros vasos condutores, com as células colocadas topo a topo.

Os traqueídos ou tracoides são células mortas alongadas e fusiformes, que se dispõem em colunas. A parede destas células esta também reforçada por depósitos de lenhina, mas de modo descontínuo e diferente de umas células para as outras, constituindo ornamentações muito variadas: anelares, espiraladas, reticuladas. A passagem da seiva bruta, entre células contíguas, faz-se através de pontuações (poros), onde a membrana se mantém muito fina.

Nas angiospérmicas (plantas com flor), o transporte da seiva bruta ocorre principalmente nos elementos de vaso, pois têm maior diâmetro e, como não há, paredes transversais, o tubo oco permite um transporte mais eficaz, estando admiravelmente adaptados para a principal função do xilema.

As fibras lenhosas são, tal como os elementos condutores (elementos de vaso e traqueídos), células mortas. Apresentam paredes espessas devido também à deposição de lenhina e a sua função é conferir rigidez e suporte ao sistema condutor.

O parênquima lenhoso é constituído por células vivas que realizam a fotossíntese e asseguram o armazenamento e a reserva de substâncias.

Os tecidos condutores associam-se, formando feixes condutores, que apresentam disposições diferentes consoante o órgão da planta onde se localizam. O xilema tem uma localização interior e central na raiz, no caule localiza-se interiormente ao floema, e está associado ao floema nas nervuras das folhas.

Fotossíntese: espetro de absorção dos pigmentos

A fotossíntese é um processo pelo qual, utilizando a energia luminosa, os seres fotoautotróficos produzem matéria orgânica a partir de dióxido de carbono e água, com libertação de oxigénio.

A fotossíntese não se resume apenas às plantas; alguns protistas (por exemplo as algas) e as cianobactérias realizam-na também. Contudo, nestes últimos organismos, o processo tem lugar ao nível de lamelas internas localizadas no citoplasma ou em extensões da membrana citoplasmática. Nos seres eucariontes (plantas e algas), realiza-se nos cloroplastos.

Para a realização da fotossíntese são necessários pigmentos fotossintéticos que se localizam no interior dos cloroplastos. A função dos pigmentos é absorver energia luminosa e convertê-la em energia química, sendo responsáveis, também, pelas cores das folhas das plantas, nas diferentes fases do seu desenvolvimento. As clorofilas são as mais abundantes e imprimem uma cor verde; os carotenoides conferem tons amarelos e laranja característicos durante o outono, quando ocorre o processo de degradação das clorofilas, que deixam de mascarar a presenças dos carotenoides.

A energia emitida pelo Sol integra um largo espetro de radiações com diferentes comprimentos de onda designado por espetro eletromagnético. A radiação visível pelo olho humano corresponde aos comprimentos de onda entre 380 nm e 750 nm. Quando atravessa um prisma ótico, a luz visível decompõe-se nas suas radiações constituintes, desde o violeta até ao vermelho, como num arco-íris. A propagação da luz ocorre através de fotões.

Os vários tipos de pigmentos fotossintéticos apresentam estruturas diferentes e captam radiações de diferentes comprimentos de onda. Quando absorvem fotões, os eletrões dos pigmentos são excitados e passam para níveis energéticos superiores, podendo ser transmitidos a outras moléculas acetoras de eletrões. Ocorrem, assim, reações de oxidação-redução. Quando uma molécula perde um eletrão, sofre oxidação e fica oxidada. O aceitador de eletrões, por sua vez, ao receber o eletrão, sofre redução e fica reduzido.

Quando a luz incide sobre as folhas das plantas, as clorofilas absorvem, essencialmente, as radiações do espetro visível de comprimentos de onda correspondentes ao azul-violeta e ao laranja-vermelho, enquanto que as radiações correspondentes ao verde são refletidas e, por isso, vemos as folhas de cor verde. Há, deste modo, uma relação entre o espetro de absorção dos pigmentos fotossintéticos e o espetro de ação da fotossíntese, evidenciando a eficiência fotossintética em função dos comprimentos de onda das diferentes radiações absorvidas. As faixas com maior intensidade fotossintética são as azul-violeta e laranja-vermelho, pois são aquelas onde ocorre maior absorção. A menor intensidade fotossintética verifica-se na faixa do verde, pois existe uma menor absorção.

Sistemas de transporte nos animais

Os animais aquáticos de pequenas dimensões e de reduzido grau de diferenciação (hidra e planária) não apresentam um sistema de transporte, havendo a difusão direta das substâncias entre o interior dos organismos e o meio externo. Vamos ver as exceções neste explicador.

Em animais aquáticos de maiores dimensões e em todos os amimais terrestres, a difusão é incapaz de garantir a distribuição dos nutrientes, gases e produtos de excreção. Deste modo, necessitam de um sistema de transporte.

Todos os sistemas de transporte são constituídos por três componentes: um fluido circulante (hemolinfa ou sangue e linfa), um órgão propulsor (coração) e um conjunto de vasos ou lacunas, onde ocorre, em parte ou no todo, a circulação do fluido. Os sistemas de transporte classificam-se em abertos e fechados. No primeiro caso, existente na maioria dos moluscos (caracol, lesma, lula), na estrela-do-mar e nos insetos, crustáceos e aracnídeos, o fluido circulante não circula sempre dentro de vasos, abandona-os e mistura-se com o fluido intersticial, nas lacunas, tornando a circulação mais lenta. Nos animais com sistemas de transporte fechados (minhoca e vertebrado – peixes, anfíbios, répteis, aves e mamíferos), o sangue circula, permanentemente, dentro de vasos.

Nos vertebrados, há uma crescente adaptação ao meio e uma maior eficácia do seu metabolismo, factos relacionados com o grau de complexidade dos seus tipos de circulação. Os peixes apresentam uma circulação simples, pois o sangue passa uma única vez no coração em cada ciclo circulatório (percorre um único circuito). Estes animais possuem um coração com apenas duas cavidades (uma aurícula e um ventrículo), circulando apenas sangue venoso (sangue com maior teor de CO2) no coração. Ao coração chega sangue venoso que passa para as brânquias para efetuar a sua oxigenação, tornando-se arterial (com maior teor de O2), direcionando-se depois para as células corporais. Como o sangue não passa novamente no coração, a circulação é muito lenta.

Nos animais que apresentam circulação dupla (em cada ciclo circulatório, o sangue passa duas vezes no coração – circulação sistémica e circulação pulmonar), a circulação pode ser incompleta ou completa. Nos répteis e anfíbios (animais cujo coração tem três cavidades, duas aurículas e um ventrículo) a circulação é incompleta, pois no coração (e mais concretamente ao nível do ventrículo) ocorre mistura de sangue arterial e venoso, diminuindo, assim, o grau de oxigenação e, consequentemente, a taxa de metabolismo. Porém, essa mistura, nos répteis, é menos significativa, pois entre os ventrículos existe um septo interventricular incompleto.

As aves e os mamíferos (cujo coração tem duas aurículas e dois ventrículos) apresentam uma circulação dupla e completa, não ocorrendo mistura de sangue. Deste modo, ao evitar a mistura de sangues, aumenta-se a eficiência no fornecimento de nutrientes e de O2 aos tecidos. As aves e os mamíferos conseguem, deste modo, ativar mecanismos de regulação da temperatura corporal, conferindo-lhes uma maior capacidade de adaptação ao meio face a condições adversas do meio ambiente.