Páginas

quinta-feira, 17 de julho de 2014

Conteúdo - Cometas

- São constituídos por poeiras, gases solidificados e gelo
- São constituídos por três partes; Núcleo, Cabeleira e Cauda
- Ex. Cometa Halley

quarta-feira, 16 de julho de 2014

Conteúdo - Estrelas



- Gigantescas bolas de gases quentes e incandescentes emitindo luz própria
Ex: Sol






- Agrupam-se em Constelações Ex: Ursa Menor, Ursa Maior, Cassiopeia …

domingo, 13 de julho de 2014

Conteúdo - Constituição do Universo

A Astronomia é a ciência que estuda o Universo.
Astrónomos são os cientistas que estudam o Universo.
O Universo é o conjunto de tudo o que existe na Terra e fora dela - é o conjunto de milhares e milhares de Galáxias.
As Galáxias são milhares de milhões de estrelas e gases, poeiras interestelares, e outros corpos celestes
A Via Láctea é a galáxia onde se encontra o Sol em torno do quela giram oito planetas principais com os seus satélite, as teróides e cometas, que com eles formam o Sistema Solar.
O Sistema Solar é constituído por uma estrela, o Sol, e por planetas principais (Mercúrio, Vénus, Terra, Marte Júpiter, Saturno, Úrano, Neptuno)por dezenas de planetas secundários ou satélites, cometas, asteróides, meteoritos, gases e poeiras.





sábado, 12 de julho de 2014

Conteúdo - Plutão

Apesar de Plutão ter sido descoberto em 1930, informações limitadas em relação a este planeta distante provocaram um atraso na compreensão das suas características. Actualmente Plutão é o único planeta que ainda não foi visitado por uma sonda, no entanto a existência de cada vez mais informações está a abrir-nos este planeta peculiar. A unicidade da órbita de Plutão, a relação entre a sua rotação e a do satélite, o eixo de rotação e as variações de luz dão ao planeta um "charme" especial.
Plutão está normalmente mais longe do Sol do que qualquer dos outros planetas; no entanto, devido à excentricidade da sua órbita, está mais próximo do queNeptuno durante 20 anos dos 249 da sua órbita. Plutão atravessou a órbita de Neptuno em 21 de Janeiro de 1979, teve a sua maior aproximação em 5 de Setembro de 1989 e permanecerá dentro da órbita de Neptuno até 11 de Fevereiro de 1999. Este facto só ocorrerá de novo em Setembro de 2226.
À medida que Plutão se aproxima do periélio, atinge a sua distância máxima da eclíptica devido à sua inclinação de 17 graus. Por isso, está muito acima ou abaixo do plano da órbita de Neptuno. Nestas condições, Plutão e Neptuno não colidem nem se aproximam mais de 18 U.A. um do outro.
O período de rotação de Plutão é de 6.387 dias, o mesmo do seu satélite Caronte. Apesar de ser normal um satélite viajar numa órbita síncrona com o seu planeta, Plutão é o único planeta que roda sincronamente com a órbita do seu satélite. Por estarem gravitalmente bloquados, Plutão e Caronte têm a mesma face continuamente virada um para o outro enquanto viajam pelo espaço.
Ao contrário da maior parte dos planetas, mas semelhante a Úrano, Plutão roda com os seus polos quase no plano orbital. O eixo de rotação de Plutão está inclinado de 122 graus. Quando Plutão foi descoberto, a região do seu polo relativamente brilhante era a vista da Terra. Plutão parecia diminuir de luminosidade enquando o nosso ponto de vista gradualmente se desviava de próximo do polo em 1954 até próximo do equador em 1973. O equador de Plutão é o que se vê agora da Terra.
Durante o período entre 1985 e 1990, a Terra estava alinhada com a órbita de Caronte à volta de Plutão de tal forma que podia ser observado um eclipse em cada dia de Plutão. Este facto deu oportunidades para obter informações significativas que levou ao desenho de mapas de albedo que definem a reflectividade da superfície, e à primeira determinação mais exacta das dimensões de Plutão e de Caronte, incluindo todos os dados que poderiam daí ser calculados.
Os primeiros eclipses (mútuos) começaram a bloquear a região polar norte. Os eclipses seguintes bloquearam a região equatorial e os eclipses restantes bloquearam a região polar sul de Plutão. Medindo cuidadosamente o brilho durante todo este tempo, foi possível determinar formações de superfície. Descobriu-se que Plutão tem uma calote polar sul muito reflectiva, uma calote polar norte mais fraca e formações brilhantes e escuras na região do equador. O albedo geométrico de Plutão é de 0.49 a 0.66, que é muito mais brilhante do que Caronte. O albedo de Caronte varia de 0.36 a 0.39.
Os eclipses duraram cerca de quatro horas e pela medida cuidadosa dos inícios e dos fins, foram obtidas medições dos seus diâmetros. Os diâmetros também podem ser medidos directamente com um erro de 1 por cento por imagens mais recentes obtidas pelo Telescópio Espacial Hubble. Estas imagens conseguem uma resolução que mostra claramente os dois objectos como dois discos separados. As ópticas melhoradas permitem-nos medir o diâmetro de Plutão com 2,274 quilómetros (1413 milhas) e o diâmetro de Caronte com 1,172 quilómetros (728 milhas), pouco mais de metade da dimensão de Plutão. A sua separação média é de 19,640 km (12,200 milhas), aproximadamente oito diâmetros de Plutão.
A separação média e o período orbital são usados para calcular as massas de Plutão e de Caronte. A massa de Plutão é cerca de 6.4 x 10-9 massas solares. Esta é quase 7 (era 12) vezes a massa de Caronte e aproximadamente 0.0021 da massa da Terra, ou um quinto da nossa lua.
densidade média de Plutão está entre 1.8 e 2.1 gramas por centímetro cúbico. Conclui-se que Plutão é 50% a 75% de rocha misturada com gelos. A densidade de Caronte é 1.2 a 1.3 g/cm3, indicando que contém poucas rochas. As diferenças em densidade dizem-nos que Plutão e Caronte foram formados independentes, apesar dos valores de Caronte obtidos do TEH serem ainda contrariados pelas observações terrestres. As origens de Plutão e de Caronte permanecem no reino da teoria.
A superfície gelada de Plutão é composta por 98% de nitrogénio (N2). Também estão presentes metano (CH4) e traços de monóxido de carbono (CO). O metano sólido indica que Plutão tem uma temperatura inferior a 70 Kelvin. A temperatura de Plutão varia muito durante o percurso da sua órbita porque Plutão pode-se aproximar do Sol até 30 UA e afastar até 50 UA. Existe uma ténue atmosfera que congela e cai na superfície quando o planeta se afasta do Sol. A NASA planeia lançar uma sonda, o Expresso de Plutão, em 2001 que permitirá aos cientistas estudarem o planeta antes da atmosfera congelar. A pressão atmosférica deduzida à superfície de Plutão é 1/100,000 da pressão à superfície da Terra.
Plutão foi oficialmente etiquetado como o nono planeta pela União Astronómica Internacional em 1930 e recebeu o nome do deus romano do submundo. Foi o primeiro e único planeta a ser descoberto por um americano, Clyde W. Tombaugh.
O caminho que levou à sua descoberta é creditado a Percival Lowell que fundou o Observatório Lowell em Flagstaff, Arizona, e custeou três pesquisas separadas do "Planet X". Lowell fez numerosos cálculos para o encontrar, sem sucesso, acreditando que ele poderia ser detectado pelo efeito que provoca na órbita de Neptuno. Dr. Vesto Slipher, o director do observatório, contratou Clyde Tombaugh para a terceira pesquisa e Clyde obteve vários conjuntos de fotografias do plano do sistema solar (eclíptica) com uma a duas semanas de separação e procurou alguma coisa que se tivesse deslocado em relação ao fundo estrelado. Esta aproximação sistemática teve sucesso e Plutão foi descoberto por este jovem (nascido em 4 de Fevereiro de 1906) de 24 anos assistente do laboratório do Kansas em 18 de Fevereiro de 1930. Plutão é na verdade pequeno demais para ser o "Planet X" que Percival Lowell esperou encontrar.


Estatísticas de Plutão
 Descoberto porClyde W. Tombaugh 
 Data da descoberta18 de Fevereiro de 1930 
 Massa (kg)1.27e+22 
 Massa (Terra = 1)2.125e-03 
 Raio equatorial (km)1,137 
 Raio equatorial (Terra = 1)0.1783 
 Densidade média (gm/cm^3)2.05 
 Distância média ao Sol (km)5,913,520,000 
 Distância média ao Sol (Terra = 1))39.5294 
 Período rotacional (dias)-6.3872 
 Período orbital (anos)248.54 
 Velocidade orbital média (km/seg)4.74 
 Excentricidade orbital0.2482 
 Inclinação do eixo (graus)122.52 
 Inclinação orbital (graus)17.148 
 Gravidade à superfície no equador (m/seg^2)0.4 
 Velocidade de escape no equador (km/seg)1.22 
 Albedo geométrico visual0.3 
 Magnitude (Vo)15.12 
 Composição atmosférica





Metano
Azoto
0.3 


Animações de Plutão e Caronte




Vistas de Plutão & Caronte



Plutão & Caronte 

Esta vista de Plutão foi obtida pelo Telescópio Espacial Hubble. Mostra uma imagem rara do pequeno Plutão com a sua lua Caronte, que é ligeiramente mais pequena do que o planeta. Por Plutão não ter sido ainda visitado por qualquer sonda espacial, permanece um planeta misterioso. Devido à sua grande distância do Sol, crê-se que a superfície de Plutão atinge temperaturas até -240°C (-400°F). Da superfície de Plutão, o Sol surge unicamente como uma estrela muito brilhante. (Cortesia NASA) 


Imagem do Telescópio Hubble 

Esta é a imagem mais nítida já conseguida do planeta distante Plutão e da sua lua, Caronte, mostrada pelo Telescópio Espacial Hubble (TEH). A imagem foi obtida em 21 de Fevereiro de 1994, quando o planeta estava a 4.4 biliões de quilómetros (2.7 biliões de milhas) da Terra.

As ópticas corrigidas do TEH mostram os dois objectos como discos nítidos e claramente separados. Isto agora permitiu aos astrónomos calcular directamente (com 1 porcento de tolerância) o diâmetro de Plutão de 2,320 quilómetros (1,440 milhas) e o diâmetro de Caronte de 1,270 quilómetros (790 milhas).

As observações do TEH mostram que Caronte é mais azul que Plutão. Isto mostra que os mundos têm superfícies com composições e estruturas diferentes. Um brilho evidente em Plutão mostra que pode ter uma camada à superfície reflectora. Uma análise detalhada da imagem do TEH sugere também que existe uma área brilhante paralela ao equador de Plutão. No entanto, são necessárias outras observações para confirmar que este efeito é real. Esta imagem do TEH foi obtida quando Caronte estava próximo da sua máxima distância de Plutão (0.9 arco de segundo). Os dois mundos estão distantes 19,640 quilómetros (12,200 milhas) um do outro. (Cortesia NASA/ESA/ESO) 


A Superfície de Plutão 

Consegue-se distinguir a superfície nunca anteriormente vista do planeta distante Plutão nestas fotos do Telescópio Espacial Hubble da NASA. Estas imagens, que foram obtidas em luz azul, mostram que Plutão é um objecto invulgarmente complexo, com mais contrastes em larga escala do que qualquer outro planeta, excepto a Terra. Plutão provavelmente mostra ainda mais contraste e talvez limites bem nítidos entre as áreas clara e escura do que visto aqui, mas a resolução do Hubble (tal como as vistas mais antigas de Marte) suavizam os contornos e juntam pequenas estruturas que estejam dentro de maiores.


As duas imagens mais pequenas no cimo são imagens reais do Hubble. O Norte é para cima. Cada pixel quadrado ("picture element") tem mais de 100 milhas de lado. Nesta resolução o Hubble discerne vagamente 12 "regiões" maiores em que a superfície é clara ou escura. As imagens maiores (em baixo) são de um mapa global numa imagem processada por computador a partir dos dados do Hubble. Estas duas vistas mostram hemisférios opostos de Plutão. (Cortesia NASA/ESA/ESO) 


Comparação de Plutão, Caronte e EUA 

Esta imagem mostra a dimensão aproximada de Plutão e Caronte sobrepondo-as a uma imagem dos Estados Unidos da América obtida pelo Radiómetro Avançado de Muito Alta Resolução (Advanced Very High Resolution Radiometer - AVHRR). Plutão tem cerca de 2274 quilómetros (1410 milhas) de diâmetro e Caronte tem cerca de 1172 quilómetros (727 milhas) de diâmetro. A imagem de Plutão foi baseada em observações do Hubble obtidas em Junho e Julho de 1994. A imagem de Caronte é baseada em medidas fotométricas adquiridas por Marc Buie do Observatório Lowell. (Copyright 1998 por Calvin J. Hamilton) 


Mapa da Superfície de Plutão 

Esta é o primeiro mapa da superfície baseado numa imagem do planeta mais remoto do sistema solar, Plutão. O mapa, que cobre 85% da superfície do planeta, confirma que Plutão tem uma faixa equatorial escura e calotes polares brilhantes, conforme tinha sido inferido de informações obtidas em Terra durante eclipses mútuos que ocorreram entre Plutão e o seu satélite Caronte no final dos anos 1980.

As variações do brilho neste mapa podem ser devidas a características topográficas tais como bacias e crateras de impacto recentes. No entanto, muitas das características da superfície são provavelmente produzidas pela distribuição complexa de gelos que migram pela superfície de Plutão nos seus ciclos orbitais e sazonais e produtos de transformações químicas depositadas da atmosfera de azoto e metano de Plutão. Poderão ser propostos alguns nomes para algumas das maiores regiões.

Técnicas de reconstrução de imagem suavizam os pixels dispersos nas quatro imagens para revelar as regiões onde a superfície é escura ou clara. A faixa preta ao longo da base corresponde à região circundante do polo sul de Plutão, que estava virada para o lado oposto quando foram feitas as observações, e não puderam ser registadas. (Cortesia NASA/ESA/ESO) 


Comparação Terra vs. Hubble 

Esta imagem mostra uma comparação entre uma vista de Terra (esquerda) e uma vista do Telescópio Espacial Hubble (direita) de Plutão e Caronte. 


Telescópio Nórdico Óptico 

Esta imagem de Plutão foi obtida Telescópio Óptico Nórdico de 2.6 metros, localizado em La Palma, Ilhas Canárias. É um bom exemplo da melhor imagem que se pode obter de telescópios em Terra. (© Copyright Nordic Optical Telescope Scientific Association -- NOTSA) 


O Expresso de Plutão 

Esta é uma pintura de Pat Rawlings da missão Expresso de Plutão, calendarizada para ser lançada em 2001 e chegar a Plutão cerca de 2006-2008. A missão consistirá num par de sondas pequenas, rápidas e relativamente baratas pesando menos de 100 kg (220 libras) cada. A sonda passará a menos de 15,000 quilómetros (9,300 milhas) de Plutão e Caronte.(Cortesia Pat Rawlings/NASA/JPL) 

sexta-feira, 11 de julho de 2014

Conteúdo - Úrano

Úrano é o sétimo planeta a partir do Sol e é o terceiro maior no sistema solar. Foi descoberto por William Herschel em 1781. Tem um diâmetro equatorial de 51,800 quilómetros (32,190 milhas) e orbita o Sol a cada 84.01 anos terrestres. A distância média ao Sol é 2.87 biliões de quilómetros (1.78 biliões de milhas). A duração de uma dia em Úrano é 17 horas e 14 minutos. Úrano tem pelo menos 21 luas. As duas maiores luas, Titânia e Oberon, foram descobertas por William Herschel em 1787.
A atmosfera de Úrano é composta por 83% de hidrogénio, 15% de hélio, 2% de metano e pequenas porções de acetileno e outros hidrocarbonetos. O metano na alta atmosfera absorve a luz vermelha, dando a Úrano a sua cor azul-esverdeada. A atmosfera está organizada em nuvens que se mantêm em altitudes constantes, semelhantes à orientação das faixas latitudinais vistas em Júpiter e Saturno. Os ventos a meia-latitude em Úrano sopram na direcção da rotação do planeta. Estes ventos sopram a velocidades de 40 a 160 metros por segundo (90 a 360 milhas por hora). Experiência com sinais de rádio registaram ventos de cerca de 100 metros por segundo soprando na direcção oposta no equador.
Úrano distingue-se pelo facto de estar inclinado para um lado. Pensa-se que a sua posição invulgar é resultado da colisão com um corpo do tamanho de um planeta no início da história do sistema solar. A Voyager 2 descobriu que uma das influências mais notáveis desta posição inclinada é o seu efeito na cauda do campo magnético, que por sua vez está inclinado 60 graus em relação ao eixo de rotação. A cauda magnética mostrou-se torcida pela rotação do planeta numa forma em espiral atrás do planeta. A origem do campo magnético é desconhecida; O oceano de água e amónia electricamente condutivo e super-pressurizado que se pensava estar entre o núcleo e a atmosfera, vê-se agora que não existe. Crê-se que os campos magnéticos da Terra e de outros planetas provêm de correntes eléctricas produzidas pelos seus núcleos fundidos.

Os Anéis de Úrano

Em 1977, foram descobertos os primeiros nove anéis de Úrano. Durante os encontros da Voyager, estes anéis foram fotografados e medidos, tal como outros dois anéis. Os anéis de Úrano são muito diferentes dos de Júpiter e Saturno. O anel épsilon exterior é composto principalmente por blocos de gelo com vários pés de diâmetro. Uma distribuição muito ténue de poeira fina também parece estar dispersa pelo sistema de anéis.
Pode existir um grande número de anéis estreitos, ou possivelmente anéis incompletos ou arcos de anéis, tão pequenos quanto 50 metros (160 pés) de largura. Descobriu-se que as partículas individuais dos anéis são de baixa reflectividade. Descobriu-se que pelo menos um anel, o épsilon, tem a cor cinzenta. As luas Cordélia e Ofélia agem como satélites pastores para o anel épsilon.


Estatísticas de Úrano
 Descoberto porWilliam Herschel 
 Data da descoberta1781 
 Massa (kg)8.686e+25 
 Massa (Terra = 1)1.4535e+01 
 Raio equatorial (km)25,559 
 Raio equatorial (Terra = 1)4.0074 
 Densidade média (gm/cm^3)1.29 
 Distância média ao Sol (km)2,870,990,000 
 Distância média ao Sol (Terra = 1)19.1914 
 Período de rotação (horas)-17.9 
 Período orbital (anos)84.01 
 Velocidade orbital média (km/seg)6.81 
 Excentricidade orbital0.0461 
 Inclinação do eixo (graus)97.86 
 Inclinação orbital (graus)0.774 
 Gravidade à superfície no equador (m/seg^2)7.77 
 Velocidade de escape no equador (km/seg)21.30 
 Albedo geométrico visual0.51 
 Magnitude (Vo)5.52 
 Temperatura média das nuvens-193°C 
 Pressão atmosférica (bars)1.2 
 Composição atmosférica





Hidrogénio
Hélio
Metano

83%
15%
2% 


Animações de Úrano




Vistas de Úrano



Úrano 

Esta vista de Úrano foi obtida pela Voyager 2 em Janeiro de 1986. O tom verde da atmosfera é devido ao metano e ao fumo fotoquímico de grande altitude. (Crédito: Calvin J. Hamilton) 


Úrano em Cor Verdadeira e Falsa 

Estas duas imagens de Úrano, uma em cor verdadeira (esquerda) e a outra em cor falsa, foram compiladas de imagens obtidas em 17 de Janeiro de 1986 pela câmara de pequena angular da Voyager 2. A sonda estava a 9.1 milhões de quilómetros (5.7 milhões de milhas) do planeta, a vários dias da maior aproximação. A figura da esquerda foi processada para mostrar Úrano tal como os olhos humanos o veriam do ponto vantajoso da sonda. A fotografia é uma composição de imagens obtidas com filtros azul, verde e laranja. A sombra mais escura na parte superior direita do disco corresponde ao limite entre o dia e a noite no planeta. Para além deste limite está o hemisfério norte escondido de Úrano, que permanece na total escuridão enquanto o planeta roda. A cor azul-esverdeada resulta da absorção da luz vermelha pelo gás metano na atmosfera profunda, fria e notavelmente clara de Úrano. A fotografia da direita usa cor falsa com aumento extremo do contraste para salientar detalhes subtis na região polar de Úrano. Imagens obtidas com filtros ultravioleta, violeta e laranja foram respectivamente convertidas para as mesmas cores azul, verde e vermelha usadas para produzir a fotografia da esquerda. Os ligeiros contrastes observados na foto de cor verdadeira estão muito exagerados nesta. Nesta foto em falsa cor, Úrano revela uma calota polar escura rodeada por uma série de faixas concêntricas progressivamente mais claras. Uma explicação possível é que uma névoa ou fumo castanho, concentrado acima do polo, é disposta em faixas pelos movimentos locais da atmosfera superior. A faixa brilhante laranja e amarela no limite inferior do planeta é um resultado do melhoramento da imagem. De facto, o limite é escuro e uniforme em cor à volta do planeta. (Cortesia NASA/JPL) 


Imagem de Despedida da Voyager 

Esta vista de Úrano foi registada pela Voyager 2 em 25 de Janeiro de l986, quando a sonda deixou o planeta para trás e prosseguiu a sua viagem em direcção a Neptuno. A Voyager esta a 1 milhão de quilómetros (620,000 milhas) de Úrano quando obteve esta foto em grande angular. A fotografia, uma composição colorida de imagens azul, verde e laranja, tem uma resolução de 140 quilómetros (90 milhas). Este fino crescente de Úrano é visto de um ângulo de 153 graus entre a sonda, o planeta e o Sol. Mesmo neste ângulo extremo, Úrano mantém a cor azul-esverdeada pálida vista pelos astrónomos em Terra e registada pela Voyager durante o seu encontro histórico. Esta cor resulta da presença do metano na atmosfera de Úrano; o gás absorve a luz no comprimento de onda dos vermelhos, deixando a tonalidade predominante aqui mostrada. A tendência para o crescente se tornar branco no limite é causada pela presença de uma névoa a grande altitude. (Cortesia NASA/JPL) 


Hubble Captura a Rotação de Úrano 

Esta vista de Úrano foi obtida pelo Telescópio Espacial Hubble, da NASA e revela um par de nuvens brilhantes no hemisfério sul do planeta, e uma névoa a grande altitude que forma uma "calota" acima do polo sul do planeta. Esta é apenas uma vista da sequência de três que podem ser vistas seleccionando a imagem gif acima.

Esta nova vista do Hubble foi obtida em 14 de Agosto de 1994, quando Úrano estava a 2.8 biliões de quilómetros (1.7 biliões de milhas) da Terra. Estes detalhes atmosféricos tinham sido previamente vistos pela sonda Voyager 2, que passou por Úrano em 1986. Desde aí, não foram possíveis mais observações detalhadas das características atmosféricas de Úrano porque o planeta está limite de resolução dos telescópios terrestres.
A Câmara Planetária 2 de Campo Aberto do Hubble observou Úrano através de um filtro que é sensível à luz reflectida por um par de nuvens de grande altitude. Isto torna uma névoa de grande altitude acima do polo sul de Úrano claramente visível, bem como um par de nuvens ou formações tipo plumagem de grande altitude que têm entre 4,300 e 3,100 quilómetros (2,500 e 1,800 milhas) de comprimento, respectivamente. (Crédito Kenneth Seidelmann, Observatório Naval Norte-Americano, e NASA)
As duas imagens adicionais do Telescópio Hubble podem ser encontradas aqui.



Satélites Pastores 

A descoberta de dois satélites pastores fez avançar a nossa compreensão da estrutura dos anéis uranianos. As luas, Cordélia (1986U7) e Ofélia (1986U8), são vistas aqui nos dois lados do anel brilhante épsilon; todos os 9 anéis de Úrano conhecidos são também visíveis. O anel épsilon aparece rodeado por um halo escuro como resultado do processamento da imagem; marcas ocasionais vistas no anel são também artefactos. Dentro do anel épsilon estão os anéis delta, gama e eta; os anéis beta e alfa; e finalmente os anéis 4, 5 e 6, pouco visíveis. Os anéis foram estudados desde a sua descoberta em 1977. (Cortesia NASA/JPL) 


Pseudo-imagem dos Anéis de Úrano 

Esta pseudo-imagem dos anéis de Úrano foi gerada usando o filtro FDS 26852.19 da Voyager 2. Esta imagem foi obtida em luz dispersa e mostra faixas de poeira ainda não vistas em qualquer outra imagem. Uma tira de 3 pixel de largura foi obtida da parte mais detalhada da imagem, transformada numa imagem de 1 pixel de largura, rodada de 360 graus e projectada em perspectiva. A cor real dos anéis é cinzento neutro e são tão escuros como carvão. (Cortesia A. Tayfun Oner) 


Os Anéis de Úrano 

Os 9 anéis conhecidos de Úrano são visíveis aqui. As linhas mais fracas, em pastel, vistas entre os anéis são resultado do tratamento por computador. Seis imagens de pequena angular foram usadas para extrair a informação da cor dos anéis extremamente escuros e fracos. A imagem final foi feita de três médias de cor e representam uma vista em cor falsa, melhorada. A imagem mostra que o anel mais brilhante no topo, épsilon, é de cor neutra com os restantes 8 anéis mais fracos mostrando diferenças nas respectivas cores. (Cortesia NASA/JPL) 


A Família de Úrano 

Esta montagem de imagens do sistema uraniano foi preparada de um conjunto de imagens obtidas pela sonda Voyager 2 durante o seu encontro com Úrano em Janeiro de 1986. A vista artística mostra Ariel em primeiro plano, Úrano logo atrás, Umbriel à esquerda, Miranda em primeiro plano à direita, Titânia desaparecendo à distância ao longe à direita, eOberon na sua órbita distante em cima. (Cortesia NASA/JPL) 


Os Anéis de Úrano



NomeDistância*LarguraEspessuraMassaAlbedo
 1986U2R38,000 km2,500 km0.1 km?0.03
 641,840 km1-3 km0.1 km?0.03
 542,230 km2-3 km0.1 km?0.03
 442,580 km2-3 km0.1 km?0.03
 Alpha44,720 km7-12 km0.1 km?0.03
 Beta45,670 km7-12 km0.1 km?0.03
 Eta47,190 km0-2 km0.1 km?0.03
 Gamma47,630 km1-4 km0.1 km?0.03
 Delta48,290 km3-9 km0.1 km?0.03
 1986U1R50,020 km1-2 km0.1 km?0.03
 Epsilon51,140 km20-100 km< 0.15 km?0.03


Resumo das Luas de Úrano



Lua#Raio
(km)
Massa
(kg)
Distância
(km)
DescobridorData
 CordéliaVI13?49,750Voyager 21986
 OféliaVII16?53,760Voyager 21986
 BiancaVIII22?59,160Voyager 21986
 CressidaIX33?61,770Voyager 21986
 DesdemonaX29?62,660Voyager 21986
 JulietaXI42?64,360Voyager 21986
 PortiaXII55?66,100Voyager 21986
 RosalindaXIII27?69,930Voyager 21986
 BelindaXIV34?75,260Voyager 21986
 1986U10XVIII20?75,000Karkoschka1999
 PuckXV77?86,010Voyager 21985
 MirandaV235.86.33e+19129,780G. Kuiper1948
 ArielI578.91.27e+21191,240W. Lassell1851
 UmbrielII584.71.27e+21265,970W. Lassell1851
 TitâniaIII788.93.49e+21435,840W. Herschel1787
 OberonIV761.43.03e+21582,600W. Herschel1787
 CalibanXVI30?7,100,000Gladman1997
 1999U1XIX20?10,000,000Kavelaars1999
 SycoraxXVII60?12,200,000Nicholson1997
 1999U2XX15?25,000,000Gladman1999
 1999U3XXI20?Holman1999